Properties

Label 4-501120-1.1-c1e2-0-2
Degree $4$
Conductor $501120$
Sign $1$
Analytic cond. $31.9518$
Root an. cond. $2.37751$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 8-s + 9-s − 10-s − 12-s − 15-s + 16-s − 18-s + 20-s + 8·23-s + 24-s − 2·25-s − 27-s − 7·29-s + 30-s − 32-s + 36-s − 40-s + 45-s − 8·46-s − 48-s + 2·49-s + 2·50-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.288·12-s − 0.258·15-s + 1/4·16-s − 0.235·18-s + 0.223·20-s + 1.66·23-s + 0.204·24-s − 2/5·25-s − 0.192·27-s − 1.29·29-s + 0.182·30-s − 0.176·32-s + 1/6·36-s − 0.158·40-s + 0.149·45-s − 1.17·46-s − 0.144·48-s + 2/7·49-s + 0.282·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 501120 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 501120 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(501120\)    =    \(2^{7} \cdot 3^{3} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(31.9518\)
Root analytic conductor: \(2.37751\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 501120,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.111877333\)
\(L(\frac12)\) \(\approx\) \(1.111877333\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3$C_1$ \( 1 + T \)
5$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 2 T + p T^{2} ) \)
29$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 6 T + p T^{2} ) \)
good7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
31$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 42 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 86 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.665418647657524737945798201024, −8.098276371464410849421139849931, −7.46966373206660917986259301232, −7.08753383519231557018373051182, −6.96631357362062081208846035981, −6.08018230806808761198816034711, −5.87275593710225401746990938546, −5.36244856864573323728173766315, −4.86809320672172245821806849075, −4.19710545329843578456863953353, −3.59900896046045211406280480046, −2.90964617288343398938152843168, −2.23036451166967016107521233389, −1.53846332930970759699648595585, −0.66892276250496833466895040198, 0.66892276250496833466895040198, 1.53846332930970759699648595585, 2.23036451166967016107521233389, 2.90964617288343398938152843168, 3.59900896046045211406280480046, 4.19710545329843578456863953353, 4.86809320672172245821806849075, 5.36244856864573323728173766315, 5.87275593710225401746990938546, 6.08018230806808761198816034711, 6.96631357362062081208846035981, 7.08753383519231557018373051182, 7.46966373206660917986259301232, 8.098276371464410849421139849931, 8.665418647657524737945798201024

Graph of the $Z$-function along the critical line