Properties

Label 4-501120-1.1-c1e2-0-16
Degree $4$
Conductor $501120$
Sign $1$
Analytic cond. $31.9518$
Root an. cond. $2.37751$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 3·5-s − 6-s − 8-s + 9-s − 3·10-s + 12-s + 3·15-s + 16-s − 18-s + 3·20-s + 12·23-s − 24-s + 8·25-s + 27-s + 29-s − 3·30-s − 32-s + 36-s − 3·40-s − 2·43-s + 3·45-s − 12·46-s + 4·47-s + 48-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 1.34·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.948·10-s + 0.288·12-s + 0.774·15-s + 1/4·16-s − 0.235·18-s + 0.670·20-s + 2.50·23-s − 0.204·24-s + 8/5·25-s + 0.192·27-s + 0.185·29-s − 0.547·30-s − 0.176·32-s + 1/6·36-s − 0.474·40-s − 0.304·43-s + 0.447·45-s − 1.76·46-s + 0.583·47-s + 0.144·48-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 501120 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 501120 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(501120\)    =    \(2^{7} \cdot 3^{3} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(31.9518\)
Root analytic conductor: \(2.37751\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 501120,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.551866599\)
\(L(\frac12)\) \(\approx\) \(2.551866599\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3$C_1$ \( 1 - T \)
5$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 4 T + p T^{2} ) \)
29$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + p T^{2} ) \)
good7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 20 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 72 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
47$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 32 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 62 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 72 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.645149289840093895557147636875, −8.333414602739296745190214251611, −7.43498894585028696534192962576, −7.23488902563676555122338034850, −6.83960325421288501397922848774, −6.35238545092836530653595253820, −5.63729895810995383404509254199, −5.46878430092274319412594285838, −4.77274156204351015931789915616, −4.21038521073443578953224456230, −3.36871781260798996464363834103, −2.70855086518484661185766841901, −2.52529983238540662663608980276, −1.54566479308762826339537421413, −1.01567012886913365107839469970, 1.01567012886913365107839469970, 1.54566479308762826339537421413, 2.52529983238540662663608980276, 2.70855086518484661185766841901, 3.36871781260798996464363834103, 4.21038521073443578953224456230, 4.77274156204351015931789915616, 5.46878430092274319412594285838, 5.63729895810995383404509254199, 6.35238545092836530653595253820, 6.83960325421288501397922848774, 7.23488902563676555122338034850, 7.43498894585028696534192962576, 8.333414602739296745190214251611, 8.645149289840093895557147636875

Graph of the $Z$-function along the critical line