L(s) = 1 | + 2·2-s + 2·3-s + 3·4-s − 2·5-s + 4·6-s + 4·8-s + 3·9-s − 4·10-s − 6·11-s + 6·12-s + 2·13-s − 4·15-s + 5·16-s − 2·17-s + 6·18-s − 4·19-s − 6·20-s − 12·22-s − 12·23-s + 8·24-s − 7·25-s + 4·26-s + 4·27-s − 8·29-s − 8·30-s − 8·31-s + 6·32-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 1.15·3-s + 3/2·4-s − 0.894·5-s + 1.63·6-s + 1.41·8-s + 9-s − 1.26·10-s − 1.80·11-s + 1.73·12-s + 0.554·13-s − 1.03·15-s + 5/4·16-s − 0.485·17-s + 1.41·18-s − 0.917·19-s − 1.34·20-s − 2.55·22-s − 2.50·23-s + 1.63·24-s − 7/5·25-s + 0.784·26-s + 0.769·27-s − 1.48·29-s − 1.46·30-s − 1.43·31-s + 1.06·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 24980004 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24980004 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.77241981987145449091893512422, −7.71700967778242078328882801199, −7.33962148830436663522419513203, −7.32847563892490985226440719407, −6.42546089759009161672579771979, −6.26477940748208019091426593596, −5.75930150876437789436849885043, −5.56093579462307517111194394751, −4.92083148830082758503110446409, −4.79373453639274746404688080022, −4.01544551245912146558098220824, −3.92115061610559210597525556062, −3.55013006670295957174203009908, −3.48658817820894353302422736919, −2.47569177749731779764648823034, −2.45252851567476973510570487421, −1.77072245249426437287142844679, −1.75961639239454982073767736550, 0, 0,
1.75961639239454982073767736550, 1.77072245249426437287142844679, 2.45252851567476973510570487421, 2.47569177749731779764648823034, 3.48658817820894353302422736919, 3.55013006670295957174203009908, 3.92115061610559210597525556062, 4.01544551245912146558098220824, 4.79373453639274746404688080022, 4.92083148830082758503110446409, 5.56093579462307517111194394751, 5.75930150876437789436849885043, 6.26477940748208019091426593596, 6.42546089759009161672579771979, 7.32847563892490985226440719407, 7.33962148830436663522419513203, 7.71700967778242078328882801199, 7.77241981987145449091893512422