L(s) = 1 | − 4·4-s − 20·5-s + 5·9-s − 74·11-s + 16·16-s − 216·19-s + 80·20-s + 275·25-s + 498·29-s + 268·31-s − 20·36-s − 412·41-s + 296·44-s − 100·45-s + 1.48e3·55-s − 4·59-s + 1.88e3·61-s − 64·64-s + 912·71-s + 864·76-s + 2.47e3·79-s − 320·80-s − 704·81-s − 440·89-s + 4.32e3·95-s − 370·99-s − 1.10e3·100-s + ⋯ |
L(s) = 1 | − 1/2·4-s − 1.78·5-s + 5/27·9-s − 2.02·11-s + 1/4·16-s − 2.60·19-s + 0.894·20-s + 11/5·25-s + 3.18·29-s + 1.55·31-s − 0.0925·36-s − 1.56·41-s + 1.01·44-s − 0.331·45-s + 3.62·55-s − 0.00882·59-s + 3.94·61-s − 1/8·64-s + 1.52·71-s + 1.30·76-s + 3.52·79-s − 0.447·80-s − 0.965·81-s − 0.524·89-s + 4.66·95-s − 0.375·99-s − 1.09·100-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 240100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240100 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.5754297499\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5754297499\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_2$ | \( 1 + p^{2} T^{2} \) |
| 5 | $C_2$ | \( 1 + 4 p T + p^{3} T^{2} \) |
| 7 | | \( 1 \) |
good | 3 | $C_2^2$ | \( 1 - 5 T^{2} + p^{6} T^{4} \) |
| 11 | $C_2$ | \( ( 1 + 37 T + p^{3} T^{2} )^{2} \) |
| 13 | $C_2^2$ | \( 1 - 1793 T^{2} + p^{6} T^{4} \) |
| 17 | $C_2^2$ | \( 1 - 8145 T^{2} + p^{6} T^{4} \) |
| 19 | $C_2$ | \( ( 1 + 108 T + p^{3} T^{2} )^{2} \) |
| 23 | $C_2^2$ | \( 1 - 19434 T^{2} + p^{6} T^{4} \) |
| 29 | $C_2$ | \( ( 1 - 249 T + p^{3} T^{2} )^{2} \) |
| 31 | $C_2$ | \( ( 1 - 134 T + p^{3} T^{2} )^{2} \) |
| 37 | $C_2^2$ | \( 1 + 10250 T^{2} + p^{6} T^{4} \) |
| 41 | $C_2$ | \( ( 1 + 206 T + p^{3} T^{2} )^{2} \) |
| 43 | $C_2^2$ | \( 1 - 17638 T^{2} + p^{6} T^{4} \) |
| 47 | $C_2^2$ | \( 1 - 125277 T^{2} + p^{6} T^{4} \) |
| 53 | $C_2^2$ | \( 1 - 297718 T^{2} + p^{6} T^{4} \) |
| 59 | $C_2$ | \( ( 1 + 2 T + p^{3} T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 - 940 T + p^{3} T^{2} )^{2} \) |
| 67 | $C_2^2$ | \( 1 - 590290 T^{2} + p^{6} T^{4} \) |
| 71 | $C_2$ | \( ( 1 - 456 T + p^{3} T^{2} )^{2} \) |
| 73 | $C_2^2$ | \( 1 - 355534 T^{2} + p^{6} T^{4} \) |
| 79 | $C_2$ | \( ( 1 - 1239 T + p^{3} T^{2} )^{2} \) |
| 83 | $C_2^2$ | \( 1 - 960390 T^{2} + p^{6} T^{4} \) |
| 89 | $C_2$ | \( ( 1 + 220 T + p^{3} T^{2} )^{2} \) |
| 97 | $C_2^2$ | \( 1 - 712321 T^{2} + p^{6} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.88984858452741850413261644410, −10.39147450357880000793897853948, −10.06534631538059304254435294140, −9.533275396470327408956705544434, −8.455793591411756842923583508376, −8.390646226696373737197570646662, −8.242133549592249647955203628102, −7.981984847407068270269091721237, −7.03965472727530106930365939734, −6.64487809452868843139584167533, −6.44901021091649594988061890626, −5.19701279982007051140619635344, −5.12336014758603854763038433786, −4.43398132836421108305922104039, −4.14376528456115719513893016371, −3.50332081764238534199157002609, −2.62107990296773824875865032064, −2.45957747222641861007880517789, −0.936028658556281577130460374182, −0.30722995468467903149198132616,
0.30722995468467903149198132616, 0.936028658556281577130460374182, 2.45957747222641861007880517789, 2.62107990296773824875865032064, 3.50332081764238534199157002609, 4.14376528456115719513893016371, 4.43398132836421108305922104039, 5.12336014758603854763038433786, 5.19701279982007051140619635344, 6.44901021091649594988061890626, 6.64487809452868843139584167533, 7.03965472727530106930365939734, 7.981984847407068270269091721237, 8.242133549592249647955203628102, 8.390646226696373737197570646662, 8.455793591411756842923583508376, 9.533275396470327408956705544434, 10.06534631538059304254435294140, 10.39147450357880000793897853948, 10.88984858452741850413261644410