Properties

Label 4-490e2-1.1-c3e2-0-24
Degree $4$
Conductor $240100$
Sign $1$
Analytic cond. $835.842$
Root an. cond. $5.37688$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 2·3-s + 12·4-s + 10·5-s + 8·6-s − 32·8-s − 5·9-s − 40·10-s − 68·11-s − 24·12-s − 52·13-s − 20·15-s + 80·16-s + 164·17-s + 20·18-s − 232·19-s + 120·20-s + 272·22-s − 198·23-s + 64·24-s + 75·25-s + 208·26-s − 26·27-s − 18·29-s + 80·30-s + 196·31-s − 192·32-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.384·3-s + 3/2·4-s + 0.894·5-s + 0.544·6-s − 1.41·8-s − 0.185·9-s − 1.26·10-s − 1.86·11-s − 0.577·12-s − 1.10·13-s − 0.344·15-s + 5/4·16-s + 2.33·17-s + 0.261·18-s − 2.80·19-s + 1.34·20-s + 2.63·22-s − 1.79·23-s + 0.544·24-s + 3/5·25-s + 1.56·26-s − 0.185·27-s − 0.115·29-s + 0.486·30-s + 1.13·31-s − 1.06·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 240100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240100 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(240100\)    =    \(2^{2} \cdot 5^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(835.842\)
Root analytic conductor: \(5.37688\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 240100,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + p T )^{2} \)
5$C_1$ \( ( 1 - p T )^{2} \)
7 \( 1 \)
good3$D_{4}$ \( 1 + 2 T + p^{2} T^{2} + 2 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 + 68 T + 3634 T^{2} + 68 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 + 4 p T + 4334 T^{2} + 4 p^{4} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 - 164 T + 13606 T^{2} - 164 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 232 T + 26438 T^{2} + 232 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 198 T + 23785 T^{2} + 198 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 18 T + 33955 T^{2} + 18 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 196 T + 27786 T^{2} - 196 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 160 T + 101082 T^{2} - 160 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 - 62 T + 72379 T^{2} - 62 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 - 198 T + 140065 T^{2} - 198 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 164 T + 211426 T^{2} - 164 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 40 T + 5570 p T^{2} - 40 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 80 T - 85178 T^{2} + 80 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 174 T + 105307 T^{2} + 174 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 1054 T + 672761 T^{2} + 1054 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 832 T + 815278 T^{2} + 832 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 - 820 T + 840150 T^{2} - 820 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 576 T + 880606 T^{2} + 576 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 + 298 T + 423841 T^{2} + 298 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 182 T + 1152523 T^{2} + 182 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 892 T + 1918278 T^{2} - 892 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.37633716797870581002568657327, −10.00685954993352103908822900158, −9.510833690452697515520259678361, −9.156753639970787623211706907993, −8.310238488988642778454622863177, −8.160438811171503196564085902298, −7.74621079553898103708450547485, −7.39138355439724096841822193351, −6.61956386748368797128677813885, −6.14494642740472718772914267425, −5.69538757554568578164738143350, −5.48748427449309442479610086983, −4.63611812994675585982415437275, −4.02532606305135047173662325231, −2.79462567891229157061265617315, −2.62539810768610520383056663664, −2.01283531906522955885869826120, −1.21712567959737101524827094557, 0, 0, 1.21712567959737101524827094557, 2.01283531906522955885869826120, 2.62539810768610520383056663664, 2.79462567891229157061265617315, 4.02532606305135047173662325231, 4.63611812994675585982415437275, 5.48748427449309442479610086983, 5.69538757554568578164738143350, 6.14494642740472718772914267425, 6.61956386748368797128677813885, 7.39138355439724096841822193351, 7.74621079553898103708450547485, 8.160438811171503196564085902298, 8.310238488988642778454622863177, 9.156753639970787623211706907993, 9.510833690452697515520259678361, 10.00685954993352103908822900158, 10.37633716797870581002568657327

Graph of the $Z$-function along the critical line