Properties

Label 4-48e4-1.1-c2e2-0-12
Degree $4$
Conductor $5308416$
Sign $1$
Analytic cond. $3941.25$
Root an. cond. $7.92334$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 32·17-s − 14·25-s + 160·41-s + 98·49-s − 220·73-s − 320·89-s − 260·97-s − 448·113-s − 242·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 238·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  + 1.88·17-s − 0.559·25-s + 3.90·41-s + 2·49-s − 3.01·73-s − 3.59·89-s − 2.68·97-s − 3.96·113-s − 2·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 1.40·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5308416\)    =    \(2^{16} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(3941.25\)
Root analytic conductor: \(7.92334\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{2304} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 5308416,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.655686531\)
\(L(\frac12)\) \(\approx\) \(2.655686531\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 - 6 T + p^{2} T^{2} )( 1 + 6 T + p^{2} T^{2} ) \)
7$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
11$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
13$C_2$ \( ( 1 - 24 T + p^{2} T^{2} )( 1 + 24 T + p^{2} T^{2} ) \)
17$C_2$ \( ( 1 - 16 T + p^{2} T^{2} )^{2} \)
19$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
23$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
29$C_2$ \( ( 1 - 42 T + p^{2} T^{2} )( 1 + 42 T + p^{2} T^{2} ) \)
31$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
37$C_2$ \( ( 1 - 24 T + p^{2} T^{2} )( 1 + 24 T + p^{2} T^{2} ) \)
41$C_2$ \( ( 1 - 80 T + p^{2} T^{2} )^{2} \)
43$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
53$C_2$ \( ( 1 - 90 T + p^{2} T^{2} )( 1 + 90 T + p^{2} T^{2} ) \)
59$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
61$C_2$ \( ( 1 - 120 T + p^{2} T^{2} )( 1 + 120 T + p^{2} T^{2} ) \)
67$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
73$C_2$ \( ( 1 + 110 T + p^{2} T^{2} )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
83$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
89$C_2$ \( ( 1 + 160 T + p^{2} T^{2} )^{2} \)
97$C_2$ \( ( 1 + 130 T + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.203115553953619061146510685632, −8.580882273943320243697807363457, −8.153787549790755160341835904355, −7.891538340471918946697573102329, −7.49631161009048434862140078490, −7.14026767403011227624318095523, −6.86598541253982223175523954476, −6.05515020503578341482657294307, −5.89076253622260548545836568733, −5.47037191862805957776267867435, −5.34692039867896409792298054887, −4.39039331770081936004751706489, −4.12110078672504490633348312926, −3.96658397178248202279254696339, −3.11297863139009321289180509152, −2.71827680301516099413511440193, −2.46254032131779528597604432431, −1.38334480358141592952942846253, −1.24912961235045319114499090181, −0.42743982385974766447887423793, 0.42743982385974766447887423793, 1.24912961235045319114499090181, 1.38334480358141592952942846253, 2.46254032131779528597604432431, 2.71827680301516099413511440193, 3.11297863139009321289180509152, 3.96658397178248202279254696339, 4.12110078672504490633348312926, 4.39039331770081936004751706489, 5.34692039867896409792298054887, 5.47037191862805957776267867435, 5.89076253622260548545836568733, 6.05515020503578341482657294307, 6.86598541253982223175523954476, 7.14026767403011227624318095523, 7.49631161009048434862140078490, 7.891538340471918946697573102329, 8.153787549790755160341835904355, 8.580882273943320243697807363457, 9.203115553953619061146510685632

Graph of the $Z$-function along the critical line