Properties

Label 4-48e4-1.1-c1e2-0-9
Degree $4$
Conductor $5308416$
Sign $1$
Analytic cond. $338.469$
Root an. cond. $4.28923$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·7-s + 10·25-s + 8·31-s + 34·49-s + 20·73-s + 8·79-s + 28·97-s + 40·103-s + 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 173-s − 80·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  − 3.02·7-s + 2·25-s + 1.43·31-s + 34/7·49-s + 2.34·73-s + 0.900·79-s + 2.84·97-s + 3.94·103-s + 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.0760·173-s − 6.04·175-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5308416\)    =    \(2^{16} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(338.469\)
Root analytic conductor: \(4.28923\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 5308416,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.474585992\)
\(L(\frac12)\) \(\approx\) \(1.474585992\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 - p T^{2} )^{2} \)
7$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - p T^{2} )^{2} \)
59$C_2$ \( ( 1 - p T^{2} )^{2} \)
61$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 122 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - p T^{2} )^{2} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.109355025347877427749698838547, −9.008428359699540435016744051413, −8.554947232483548683002580658808, −8.124169989877371713769418839823, −7.35968717154217309943927251970, −7.35928195643356245391222192985, −6.66926198963039532733097882902, −6.44909564911114125700282328747, −6.26610341501198060980853030440, −5.94757960444598584508574878041, −5.06280644591501156631301521343, −5.02021312284690983688973493731, −4.29872888615737020177104784318, −3.74383113409750442137554660928, −3.29021543040717627143857293621, −3.14661758904341400413257763534, −2.59733218933344662632698734592, −2.11261587435062822607495516605, −0.907548119678773926813708962442, −0.54054744680117114954700093718, 0.54054744680117114954700093718, 0.907548119678773926813708962442, 2.11261587435062822607495516605, 2.59733218933344662632698734592, 3.14661758904341400413257763534, 3.29021543040717627143857293621, 3.74383113409750442137554660928, 4.29872888615737020177104784318, 5.02021312284690983688973493731, 5.06280644591501156631301521343, 5.94757960444598584508574878041, 6.26610341501198060980853030440, 6.44909564911114125700282328747, 6.66926198963039532733097882902, 7.35928195643356245391222192985, 7.35968717154217309943927251970, 8.124169989877371713769418839823, 8.554947232483548683002580658808, 9.008428359699540435016744051413, 9.109355025347877427749698838547

Graph of the $Z$-function along the critical line