Properties

Label 4-48e4-1.1-c1e2-0-29
Degree $4$
Conductor $5308416$
Sign $1$
Analytic cond. $338.469$
Root an. cond. $4.28923$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 8·17-s − 16·23-s + 6·25-s − 12·31-s + 24·41-s + 16·47-s − 2·49-s − 4·73-s − 28·79-s − 16·89-s − 4·97-s − 28·103-s − 16·113-s + 32·119-s + 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 64·161-s + 163-s + 167-s + 22·169-s + ⋯
L(s)  = 1  − 1.51·7-s − 1.94·17-s − 3.33·23-s + 6/5·25-s − 2.15·31-s + 3.74·41-s + 2.33·47-s − 2/7·49-s − 0.468·73-s − 3.15·79-s − 1.69·89-s − 0.406·97-s − 2.75·103-s − 1.50·113-s + 2.93·119-s + 6/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 5.04·161-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5308416\)    =    \(2^{16} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(338.469\)
Root analytic conductor: \(4.28923\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 5308416,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.954994220680132586444216566726, −8.523279014789570155655082981833, −7.974876569952133207354443364672, −7.70801649405573358764580996639, −7.09703546460804970094605696028, −6.93987392654325592399589061998, −6.52194513518395794877911625388, −5.92330826315976788225337408832, −5.76321471351560276080619964280, −5.62211798756695795233772317844, −4.47665227301461539913999542338, −4.38989350882677036367859044587, −3.91997908796352962291567467270, −3.64893927339412581488796471968, −2.66407365747891032890302225959, −2.64418903952155888491435109524, −2.04847029873342690456101871207, −1.26543081489204407561362237186, 0, 0, 1.26543081489204407561362237186, 2.04847029873342690456101871207, 2.64418903952155888491435109524, 2.66407365747891032890302225959, 3.64893927339412581488796471968, 3.91997908796352962291567467270, 4.38989350882677036367859044587, 4.47665227301461539913999542338, 5.62211798756695795233772317844, 5.76321471351560276080619964280, 5.92330826315976788225337408832, 6.52194513518395794877911625388, 6.93987392654325592399589061998, 7.09703546460804970094605696028, 7.70801649405573358764580996639, 7.974876569952133207354443364672, 8.523279014789570155655082981833, 8.954994220680132586444216566726

Graph of the $Z$-function along the critical line