Properties

Label 4-48e4-1.1-c1e2-0-20
Degree $4$
Conductor $5308416$
Sign $1$
Analytic cond. $338.469$
Root an. cond. $4.28923$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16·19-s − 10·25-s + 16·43-s − 2·49-s + 32·67-s + 20·73-s − 28·97-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  + 3.67·19-s − 2·25-s + 2.43·43-s − 2/7·49-s + 3.90·67-s + 2.34·73-s − 2.84·97-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5308416\)    =    \(2^{16} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(338.469\)
Root analytic conductor: \(4.28923\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 5308416,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.949171984\)
\(L(\frac12)\) \(\approx\) \(2.949171984\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 16 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.332707224469189135706370334204, −8.992519411292991924842245807614, −8.119739549222488436583267113574, −8.090352873655926573514295386900, −7.68001558183480047677398162889, −7.41600527888526306211129247287, −6.76620814624473543962950074902, −6.72350388056099916704719561778, −5.87637448564186668177525096222, −5.62322477351063974061968965290, −5.26451074401308516574797775769, −5.09438222617675459139753777471, −4.13212158993635176805229890657, −4.02597593827844372717627042427, −3.41532837479100420248248570026, −3.05803730692776013728153443185, −2.44090522270230126749124540829, −1.93459654960902440686875369465, −1.11584692571036805227010716670, −0.69332551679183177694184092560, 0.69332551679183177694184092560, 1.11584692571036805227010716670, 1.93459654960902440686875369465, 2.44090522270230126749124540829, 3.05803730692776013728153443185, 3.41532837479100420248248570026, 4.02597593827844372717627042427, 4.13212158993635176805229890657, 5.09438222617675459139753777471, 5.26451074401308516574797775769, 5.62322477351063974061968965290, 5.87637448564186668177525096222, 6.72350388056099916704719561778, 6.76620814624473543962950074902, 7.41600527888526306211129247287, 7.68001558183480047677398162889, 8.090352873655926573514295386900, 8.119739549222488436583267113574, 8.992519411292991924842245807614, 9.332707224469189135706370334204

Graph of the $Z$-function along the critical line