Properties

Label 4-48e2-1.1-c10e2-0-2
Degree $4$
Conductor $2304$
Sign $1$
Analytic cond. $930.076$
Root an. cond. $5.52242$
Motivic weight $10$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.78e3·5-s − 1.96e4·9-s + 2.48e5·13-s + 2.55e6·17-s − 2.33e6·25-s + 3.16e7·29-s + 2.33e8·37-s + 2.64e8·41-s + 9.42e7·45-s + 5.20e8·49-s + 9.78e8·53-s + 1.10e9·61-s − 1.19e9·65-s − 6.17e9·73-s + 3.87e8·81-s − 1.22e10·85-s − 1.61e9·89-s − 1.64e10·97-s − 8.37e9·101-s + 1.46e10·109-s + 7.13e10·113-s − 4.89e9·117-s + 3.94e10·121-s + 8.53e10·125-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 1.53·5-s − 1/3·9-s + 0.669·13-s + 1.79·17-s − 0.239·25-s + 1.54·29-s + 3.36·37-s + 2.28·41-s + 0.510·45-s + 1.84·49-s + 2.34·53-s + 1.30·61-s − 1.02·65-s − 2.97·73-s + 1/9·81-s − 2.75·85-s − 0.289·89-s − 1.92·97-s − 0.796·101-s + 0.951·109-s + 3.87·113-s − 0.223·117-s + 1.52·121-s + 2.79·125-s − 2.36·145-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(11-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s+5)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2304\)    =    \(2^{8} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(930.076\)
Root analytic conductor: \(5.52242\)
Motivic weight: \(10\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2304,\ (\ :5, 5),\ 1)\)

Particular Values

\(L(\frac{11}{2})\) \(\approx\) \(2.641105991\)
\(L(\frac12)\) \(\approx\) \(2.641105991\)
\(L(6)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p^{9} T^{2} \)
good5$C_2$ \( ( 1 + 2394 T + p^{10} T^{2} )^{2} \)
7$C_2^2$ \( 1 - 10628690 p^{2} T^{2} + p^{20} T^{4} \)
11$C_2^2$ \( 1 - 39459030530 T^{2} + p^{20} T^{4} \)
13$C_2$ \( ( 1 - 9562 p T + p^{10} T^{2} )^{2} \)
17$C_2$ \( ( 1 - 1276794 T + p^{10} T^{2} )^{2} \)
19$C_2^2$ \( 1 - 11523143800034 T^{2} + p^{20} T^{4} \)
23$C_2^2$ \( 1 - 81559494158498 T^{2} + p^{20} T^{4} \)
29$C_2$ \( ( 1 - 15807870 T + p^{10} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 684980179236910 T^{2} + p^{20} T^{4} \)
37$C_2$ \( ( 1 - 116655866 T + p^{10} T^{2} )^{2} \)
41$C_2$ \( ( 1 - 132356106 T + p^{10} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 42342726693304706 T^{2} + p^{20} T^{4} \)
47$C_2^2$ \( 1 - 81876278110171010 T^{2} + p^{20} T^{4} \)
53$C_2$ \( ( 1 - 489324942 T + p^{10} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 788771550043537730 T^{2} + p^{20} T^{4} \)
61$C_2$ \( ( 1 - 551229530 T + p^{10} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 3601617710717704226 T^{2} + p^{20} T^{4} \)
71$C_2^2$ \( 1 + 398656133613437470 T^{2} + p^{20} T^{4} \)
73$C_2$ \( ( 1 + 3085329518 T + p^{10} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 18836980136966441234 T^{2} + p^{20} T^{4} \)
83$C_2^2$ \( 1 + 132318476153326 p^{2} T^{2} + p^{20} T^{4} \)
89$C_2$ \( ( 1 + 806913486 T + p^{10} T^{2} )^{2} \)
97$C_2$ \( ( 1 + 85044638 p T + p^{10} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.73302934216819499252181617970, −13.21929605873588725002562627450, −12.23553635224157496155883521429, −12.18158389597844463664844946581, −11.32882523839329218335256018034, −11.16715365520268178031908473086, −10.12381208289513085802672841531, −9.730211222383538795833827224356, −8.675540056306968511003528786503, −8.267073504673874150014378238119, −7.55039276004413754811829421960, −7.30565954934165250335483548338, −5.85404838861916723794994663911, −5.83779123883587896504595365917, −4.28289735737920386207126632934, −4.14724702459550560409899274774, −3.17503690142517348871708932271, −2.47383674031320903336843861426, −0.864566451518598459976327252506, −0.76131703395462548031750471792, 0.76131703395462548031750471792, 0.864566451518598459976327252506, 2.47383674031320903336843861426, 3.17503690142517348871708932271, 4.14724702459550560409899274774, 4.28289735737920386207126632934, 5.83779123883587896504595365917, 5.85404838861916723794994663911, 7.30565954934165250335483548338, 7.55039276004413754811829421960, 8.267073504673874150014378238119, 8.675540056306968511003528786503, 9.730211222383538795833827224356, 10.12381208289513085802672841531, 11.16715365520268178031908473086, 11.32882523839329218335256018034, 12.18158389597844463664844946581, 12.23553635224157496155883521429, 13.21929605873588725002562627450, 13.73302934216819499252181617970

Graph of the $Z$-function along the critical line