Properties

Label 4-480e2-1.1-c3e2-0-7
Degree $4$
Conductor $230400$
Sign $1$
Analytic cond. $802.074$
Root an. cond. $5.32174$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·3-s − 10·5-s − 12·7-s + 27·9-s + 24·11-s + 80·13-s + 60·15-s + 40·17-s + 36·19-s + 72·21-s − 108·23-s + 75·25-s − 108·27-s − 108·29-s − 516·31-s − 144·33-s + 120·35-s + 448·37-s − 480·39-s − 212·41-s − 456·43-s − 270·45-s − 756·47-s − 414·49-s − 240·51-s + 252·53-s − 240·55-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.894·5-s − 0.647·7-s + 9-s + 0.657·11-s + 1.70·13-s + 1.03·15-s + 0.570·17-s + 0.434·19-s + 0.748·21-s − 0.979·23-s + 3/5·25-s − 0.769·27-s − 0.691·29-s − 2.98·31-s − 0.759·33-s + 0.579·35-s + 1.99·37-s − 1.97·39-s − 0.807·41-s − 1.61·43-s − 0.894·45-s − 2.34·47-s − 1.20·49-s − 0.658·51-s + 0.653·53-s − 0.588·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 230400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 230400 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(230400\)    =    \(2^{10} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(802.074\)
Root analytic conductor: \(5.32174\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 230400,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + p T )^{2} \)
5$C_1$ \( ( 1 + p T )^{2} \)
good7$D_{4}$ \( 1 + 12 T + 558 T^{2} + 12 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 - 24 T + 182 T^{2} - 24 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 80 T + 4518 T^{2} - 80 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 - 40 T - 3058 T^{2} - 40 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 36 T + 758 T^{2} - 36 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 108 T + 27086 T^{2} + 108 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 108 T + 28078 T^{2} + 108 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 516 T + 122046 T^{2} + 516 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 448 T + 138198 T^{2} - 448 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 212 T + 1478 T^{2} + 212 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 456 T + 187382 T^{2} + 456 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 756 T + 322814 T^{2} + 756 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 252 T + 24334 T^{2} - 252 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 792 T + 564950 T^{2} + 792 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 164 T + 454782 T^{2} - 164 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 216 T + 295686 T^{2} - 216 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 1056 T + 984110 T^{2} + 1056 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 36 T + 772454 T^{2} + 36 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 2028 T + 1955070 T^{2} + 2028 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 + 360 T + 1008038 T^{2} + 360 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 1588 T + 1892774 T^{2} + 1588 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 1540 T + 1568070 T^{2} - 1540 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.37607398435961941555825642989, −10.00829178048293484955686210950, −9.458902466291272623195879919828, −9.202320977326638206761002164845, −8.336813857688250112935537590976, −8.232601568852549157687448305181, −7.44206678813944824754395868209, −7.16737064947454009669521405577, −6.41180843857549426894385044141, −6.31648345799553570648203287275, −5.56627186879273170179887899956, −5.38930254185735005843191424292, −4.38718440621161168133058639668, −4.08596190680334104656907728081, −3.40508899725484278063292756887, −3.19447690847969023132534999423, −1.51906223815079821197587200245, −1.45836112621855294670865571343, 0, 0, 1.45836112621855294670865571343, 1.51906223815079821197587200245, 3.19447690847969023132534999423, 3.40508899725484278063292756887, 4.08596190680334104656907728081, 4.38718440621161168133058639668, 5.38930254185735005843191424292, 5.56627186879273170179887899956, 6.31648345799553570648203287275, 6.41180843857549426894385044141, 7.16737064947454009669521405577, 7.44206678813944824754395868209, 8.232601568852549157687448305181, 8.336813857688250112935537590976, 9.202320977326638206761002164845, 9.458902466291272623195879919828, 10.00829178048293484955686210950, 10.37607398435961941555825642989

Graph of the $Z$-function along the critical line