L(s) = 1 | + 2·3-s − 2·5-s + 9-s − 4·15-s + 8·19-s − 12·23-s + 3·25-s − 4·27-s + 12·29-s + 20·43-s − 2·45-s + 12·47-s − 10·49-s − 12·53-s + 16·57-s − 4·67-s − 24·69-s + 24·71-s + 4·73-s + 6·75-s − 11·81-s + 24·87-s − 16·95-s + 4·97-s + 12·101-s + 24·115-s − 22·121-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.894·5-s + 1/3·9-s − 1.03·15-s + 1.83·19-s − 2.50·23-s + 3/5·25-s − 0.769·27-s + 2.22·29-s + 3.04·43-s − 0.298·45-s + 1.75·47-s − 1.42·49-s − 1.64·53-s + 2.11·57-s − 0.488·67-s − 2.88·69-s + 2.84·71-s + 0.468·73-s + 0.692·75-s − 1.22·81-s + 2.57·87-s − 1.64·95-s + 0.406·97-s + 1.19·101-s + 2.23·115-s − 2·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 230400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 230400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.111389675\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.111389675\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | $C_2$ | \( 1 - 2 T + p T^{2} \) |
| 5 | $C_1$ | \( ( 1 + T )^{2} \) |
good | 7 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 11 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 13 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 17 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 19 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) |
| 23 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 31 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 41 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 43 | $C_2$ | \( ( 1 - 10 T + p T^{2} )^{2} \) |
| 47 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 53 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 59 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 61 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 67 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 71 | $C_2$ | \( ( 1 - 12 T + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 79 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 83 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 89 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 97 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.740293324354028093320034492248, −8.653890189345444264476979651637, −7.79407539110457648656273831410, −7.71273110823499542846308181544, −7.60753011721166622675464955174, −6.54046274838058996502273479449, −6.27087624192875571051851265258, −5.52947923104725115211828893156, −4.97997261589161680655107982307, −4.12250433368686324236236368171, −4.00111153404090288423211291284, −3.18925682979485723001966009201, −2.76929890617261215013507568311, −2.04591517438255900406864260966, −0.862970868573876613686429334418,
0.862970868573876613686429334418, 2.04591517438255900406864260966, 2.76929890617261215013507568311, 3.18925682979485723001966009201, 4.00111153404090288423211291284, 4.12250433368686324236236368171, 4.97997261589161680655107982307, 5.52947923104725115211828893156, 6.27087624192875571051851265258, 6.54046274838058996502273479449, 7.60753011721166622675464955174, 7.71273110823499542846308181544, 7.79407539110457648656273831410, 8.653890189345444264476979651637, 8.740293324354028093320034492248