Properties

Label 4-4800e2-1.1-c1e2-0-37
Degree $4$
Conductor $23040000$
Sign $1$
Analytic cond. $1469.05$
Root an. cond. $6.19097$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9-s + 12·11-s + 2·19-s + 12·29-s + 6·31-s + 8·41-s − 11·49-s − 12·59-s − 6·61-s − 24·71-s + 16·79-s + 81-s + 32·89-s − 12·99-s + 16·101-s − 14·109-s + 86·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 17·169-s + ⋯
L(s)  = 1  − 1/3·9-s + 3.61·11-s + 0.458·19-s + 2.22·29-s + 1.07·31-s + 1.24·41-s − 1.57·49-s − 1.56·59-s − 0.768·61-s − 2.84·71-s + 1.80·79-s + 1/9·81-s + 3.39·89-s − 1.20·99-s + 1.59·101-s − 1.34·109-s + 7.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.30·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23040000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23040000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(23040000\)    =    \(2^{12} \cdot 3^{2} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(1469.05\)
Root analytic conductor: \(6.19097\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 23040000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.543039956\)
\(L(\frac12)\) \(\approx\) \(4.543039956\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
good7$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 42 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + 35 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 42 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 133 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 16 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 145 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.584753092487217925910789315590, −8.070386165258264988331779367625, −7.73568343271214195814678494758, −7.45444409110125013809191357255, −6.73642010792931587839690470639, −6.65214468058777236027927195718, −6.26422861346898765050741812747, −6.18874262511404438246195101406, −5.76164771756570215256683818429, −4.89018878615758594764240389838, −4.73140944595475011944813448837, −4.43643856529949201010740593328, −3.90278830921214390507713179810, −3.62655754323216977496943798067, −3.10268610706440176264105835414, −2.81703981853751883824249755605, −2.07188570304636866346138555998, −1.42464396943373685245798694693, −1.21221986866717236464162381646, −0.66526899198926756244062975514, 0.66526899198926756244062975514, 1.21221986866717236464162381646, 1.42464396943373685245798694693, 2.07188570304636866346138555998, 2.81703981853751883824249755605, 3.10268610706440176264105835414, 3.62655754323216977496943798067, 3.90278830921214390507713179810, 4.43643856529949201010740593328, 4.73140944595475011944813448837, 4.89018878615758594764240389838, 5.76164771756570215256683818429, 6.18874262511404438246195101406, 6.26422861346898765050741812747, 6.65214468058777236027927195718, 6.73642010792931587839690470639, 7.45444409110125013809191357255, 7.73568343271214195814678494758, 8.070386165258264988331779367625, 8.584753092487217925910789315590

Graph of the $Z$-function along the critical line