Properties

Label 4-476e2-1.1-c1e2-0-21
Degree $4$
Conductor $226576$
Sign $1$
Analytic cond. $14.4466$
Root an. cond. $1.94958$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 2·7-s − 4·9-s − 6·11-s − 2·13-s + 15-s + 2·17-s − 8·19-s + 2·21-s − 2·23-s − 8·25-s + 6·27-s + 2·29-s − 3·31-s + 6·33-s + 2·35-s − 8·37-s + 2·39-s + 11·41-s − 13·43-s + 4·45-s − 8·47-s + 3·49-s − 2·51-s − 3·53-s + 6·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.755·7-s − 4/3·9-s − 1.80·11-s − 0.554·13-s + 0.258·15-s + 0.485·17-s − 1.83·19-s + 0.436·21-s − 0.417·23-s − 8/5·25-s + 1.15·27-s + 0.371·29-s − 0.538·31-s + 1.04·33-s + 0.338·35-s − 1.31·37-s + 0.320·39-s + 1.71·41-s − 1.98·43-s + 0.596·45-s − 1.16·47-s + 3/7·49-s − 0.280·51-s − 0.412·53-s + 0.809·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 226576 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 226576 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(226576\)    =    \(2^{4} \cdot 7^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(14.4466\)
Root analytic conductor: \(1.94958\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 226576,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$ \( ( 1 + T )^{2} \)
17$C_1$ \( ( 1 - T )^{2} \)
good3$D_{4}$ \( 1 + T + 5 T^{2} + p T^{3} + p^{2} T^{4} \)
5$D_{4}$ \( 1 + T + 9 T^{2} + p T^{3} + p^{2} T^{4} \)
11$C_4$ \( 1 + 6 T + 26 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 2 T + 22 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
19$C_4$ \( 1 + 8 T + 34 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - 2 T + 14 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 3 T + 3 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 8 T + 70 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 11 T + 81 T^{2} - 11 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 13 T + 97 T^{2} + 13 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 8 T + 90 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 3 T - 43 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$D_{4}$ \( 1 - T + p T^{2} - p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 15 T + 159 T^{2} + 15 p T^{3} + p^{2} T^{4} \)
71$C_4$ \( 1 - 4 T + 66 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 21 T + 245 T^{2} - 21 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 12 T + 114 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 4 T - 10 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
97$D_{4}$ \( 1 - 19 T + 253 T^{2} - 19 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.62629017856199642801307602935, −10.51252311125244045988824095384, −9.966645345098210817996969322645, −9.638768119671122668957546664107, −8.728967377854870771040822927766, −8.658196690909550296204961145041, −7.87434135982152048716205109674, −7.82326062732188137232193230823, −7.15057066281716292898774468567, −6.37883853304271120249831911041, −6.10306310765673588210428179084, −5.69838754641572995579623865525, −4.93440284578987461429777565069, −4.83915503203818596764524072433, −3.72779820241498085148214794111, −3.37199028118464687204893382458, −2.54553834586009147071396942571, −2.10526407077591860907158640357, 0, 0, 2.10526407077591860907158640357, 2.54553834586009147071396942571, 3.37199028118464687204893382458, 3.72779820241498085148214794111, 4.83915503203818596764524072433, 4.93440284578987461429777565069, 5.69838754641572995579623865525, 6.10306310765673588210428179084, 6.37883853304271120249831911041, 7.15057066281716292898774468567, 7.82326062732188137232193230823, 7.87434135982152048716205109674, 8.658196690909550296204961145041, 8.728967377854870771040822927766, 9.638768119671122668957546664107, 9.966645345098210817996969322645, 10.51252311125244045988824095384, 10.62629017856199642801307602935

Graph of the $Z$-function along the critical line