Properties

Label 4-4741-1.1-c1e2-0-0
Degree $4$
Conductor $4741$
Sign $-1$
Analytic cond. $0.302290$
Root an. cond. $0.741491$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 3·5-s + 6-s − 3·7-s − 3·8-s − 2·9-s + 3·10-s + 11-s − 12-s − 13-s + 3·14-s + 3·15-s + 16-s + 5·17-s + 2·18-s − 8·19-s − 3·20-s + 3·21-s − 22-s + 7·23-s + 3·24-s + 26-s + 2·27-s − 3·28-s − 3·30-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 1.34·5-s + 0.408·6-s − 1.13·7-s − 1.06·8-s − 2/3·9-s + 0.948·10-s + 0.301·11-s − 0.288·12-s − 0.277·13-s + 0.801·14-s + 0.774·15-s + 1/4·16-s + 1.21·17-s + 0.471·18-s − 1.83·19-s − 0.670·20-s + 0.654·21-s − 0.213·22-s + 1.45·23-s + 0.612·24-s + 0.196·26-s + 0.384·27-s − 0.566·28-s − 0.547·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4741 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4741 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4741\)    =    \(11 \cdot 431\)
Sign: $-1$
Analytic conductor: \(0.302290\)
Root analytic conductor: \(0.741491\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 4741,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad11$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 2 T + p T^{2} ) \)
431$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + p T^{2} ) \)
good2$D_{4}$ \( 1 + T + p T^{3} + p^{2} T^{4} \)
3$D_{4}$ \( 1 + T + p T^{2} + p T^{3} + p^{2} T^{4} \)
5$D_{4}$ \( 1 + 3 T + 9 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 + 3 T + 11 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + T + 4 T^{2} + p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - 5 T + 36 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 8 T + 40 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 - 7 T + 49 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 6 T + 10 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 7 T + 9 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 2 T + 44 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + T - 7 T^{2} + p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 8 T + 106 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + T - 16 T^{2} + p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 3 T - 4 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 32 T^{2} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 5 T + 72 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 3 T + 126 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 9 T + 146 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 5 T + 4 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 3 T + 167 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.6951254998, −17.1862084004, −16.8719786028, −16.4648147020, −15.8201027483, −15.3873870862, −14.9700760953, −14.5163820558, −13.5642471010, −12.9083220658, −12.2331414014, −12.0307530708, −11.4397378940, −10.9515256778, −10.2858225446, −9.58033526330, −9.04324842282, −8.32688303167, −7.90792151761, −6.87256183651, −6.50383116292, −5.81326735153, −4.72176268224, −3.60046348941, −2.87983906883, 0, 2.87983906883, 3.60046348941, 4.72176268224, 5.81326735153, 6.50383116292, 6.87256183651, 7.90792151761, 8.32688303167, 9.04324842282, 9.58033526330, 10.2858225446, 10.9515256778, 11.4397378940, 12.0307530708, 12.2331414014, 12.9083220658, 13.5642471010, 14.5163820558, 14.9700760953, 15.3873870862, 15.8201027483, 16.4648147020, 16.8719786028, 17.1862084004, 17.6951254998

Graph of the $Z$-function along the critical line