Properties

Label 4-464e2-1.1-c1e2-0-15
Degree $4$
Conductor $215296$
Sign $-1$
Analytic cond. $13.7274$
Root an. cond. $1.92485$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 4·7-s + 9-s − 2·13-s − 4·23-s − 3·25-s + 2·29-s − 8·35-s + 2·45-s + 2·49-s + 6·53-s − 12·59-s − 4·63-s − 4·65-s − 8·67-s + 8·71-s − 8·81-s − 4·83-s + 8·91-s − 32·103-s + 4·107-s − 6·109-s − 8·115-s − 2·117-s + 17·121-s − 10·125-s + 127-s + ⋯
L(s)  = 1  + 0.894·5-s − 1.51·7-s + 1/3·9-s − 0.554·13-s − 0.834·23-s − 3/5·25-s + 0.371·29-s − 1.35·35-s + 0.298·45-s + 2/7·49-s + 0.824·53-s − 1.56·59-s − 0.503·63-s − 0.496·65-s − 0.977·67-s + 0.949·71-s − 8/9·81-s − 0.439·83-s + 0.838·91-s − 3.15·103-s + 0.386·107-s − 0.574·109-s − 0.746·115-s − 0.184·117-s + 1.54·121-s − 0.894·125-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 215296 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 215296 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(215296\)    =    \(2^{8} \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(13.7274\)
Root analytic conductor: \(1.92485\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 215296,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
29$C_2$ \( 1 - 2 T + p T^{2} \)
good3$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
5$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 21 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 15 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 67 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 142 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.944484008314439471531146569564, −8.391059387111091082304569898852, −7.78769027397853387005458572476, −7.35557370624636616526357527142, −6.67947017652029373068355189043, −6.48488959613588788646368033785, −5.83781525425299444369164051890, −5.59611708455098243733800900727, −4.79278234445972653071474662432, −4.19128170456069501552125238629, −3.58058403021236909710312817373, −2.90774117310316373933884637970, −2.33637286847522632523061847417, −1.49599243708434003017641040934, 0, 1.49599243708434003017641040934, 2.33637286847522632523061847417, 2.90774117310316373933884637970, 3.58058403021236909710312817373, 4.19128170456069501552125238629, 4.79278234445972653071474662432, 5.59611708455098243733800900727, 5.83781525425299444369164051890, 6.48488959613588788646368033785, 6.67947017652029373068355189043, 7.35557370624636616526357527142, 7.78769027397853387005458572476, 8.391059387111091082304569898852, 8.944484008314439471531146569564

Graph of the $Z$-function along the critical line