Properties

Label 4-462e2-1.1-c1e2-0-20
Degree $4$
Conductor $213444$
Sign $-1$
Analytic cond. $13.6093$
Root an. cond. $1.92070$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s − 4·7-s + 4·8-s − 9-s − 4·11-s − 8·14-s + 5·16-s − 2·18-s − 8·22-s − 6·23-s − 8·25-s − 12·28-s + 8·29-s + 6·32-s − 3·36-s − 4·37-s + 2·43-s − 12·44-s − 12·46-s + 9·49-s − 16·50-s − 26·53-s − 16·56-s + 16·58-s + 4·63-s + 7·64-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s − 1.51·7-s + 1.41·8-s − 1/3·9-s − 1.20·11-s − 2.13·14-s + 5/4·16-s − 0.471·18-s − 1.70·22-s − 1.25·23-s − 8/5·25-s − 2.26·28-s + 1.48·29-s + 1.06·32-s − 1/2·36-s − 0.657·37-s + 0.304·43-s − 1.80·44-s − 1.76·46-s + 9/7·49-s − 2.26·50-s − 3.57·53-s − 2.13·56-s + 2.10·58-s + 0.503·63-s + 7/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 213444 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 213444 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(213444\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(13.6093\)
Root analytic conductor: \(1.92070\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 213444,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
3$C_2$ \( 1 + T^{2} \)
7$C_2$ \( 1 + 4 T + p T^{2} \)
11$C_2$ \( 1 + 4 T + p T^{2} \)
good5$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 20 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 80 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 12 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 104 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 56 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 66 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.746596566655627372227816500830, −8.061198584785749060904406475426, −7.85694989382193453068773222919, −7.27621615658792238413137504693, −6.52942432980064213361944418884, −6.32909157472471250011099205825, −5.90254046530571968266193465680, −5.34163701086578957197840051403, −4.84889969602696966910786363246, −4.15551808462629396511001214996, −3.64945365799186774562776746606, −3.02452322121104901260433748870, −2.65219906650047338477008693772, −1.82688945775412796314629214483, 0, 1.82688945775412796314629214483, 2.65219906650047338477008693772, 3.02452322121104901260433748870, 3.64945365799186774562776746606, 4.15551808462629396511001214996, 4.84889969602696966910786363246, 5.34163701086578957197840051403, 5.90254046530571968266193465680, 6.32909157472471250011099205825, 6.52942432980064213361944418884, 7.27621615658792238413137504693, 7.85694989382193453068773222919, 8.061198584785749060904406475426, 8.746596566655627372227816500830

Graph of the $Z$-function along the critical line