L(s) = 1 | − 2-s + 2·3-s + 4-s − 2·6-s − 8-s − 3·9-s − 12·11-s + 2·12-s + 16-s + 6·17-s + 3·18-s + 2·19-s + 12·22-s − 2·24-s − 10·25-s − 14·27-s − 32-s − 24·33-s − 6·34-s − 3·36-s − 2·38-s + 16·43-s − 12·44-s + 2·48-s − 13·49-s + 10·50-s + 12·51-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.15·3-s + 1/2·4-s − 0.816·6-s − 0.353·8-s − 9-s − 3.61·11-s + 0.577·12-s + 1/4·16-s + 1.45·17-s + 0.707·18-s + 0.458·19-s + 2.55·22-s − 0.408·24-s − 2·25-s − 2.69·27-s − 0.176·32-s − 4.17·33-s − 1.02·34-s − 1/2·36-s − 0.324·38-s + 2.43·43-s − 1.80·44-s + 0.288·48-s − 1.85·49-s + 1.41·50-s + 1.68·51-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 46208 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46208 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_1$ | \( 1 + T \) |
| 19 | $C_1$ | \( ( 1 - T )^{2} \) |
good | 3 | $C_2$ | \( ( 1 - T + p T^{2} )^{2} \) |
| 5 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 7 | $C_2$ | \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) |
| 11 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 13 | $C_2$ | \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) |
| 17 | $C_2$ | \( ( 1 - 3 T + p T^{2} )^{2} \) |
| 23 | $C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) |
| 29 | $C_2$ | \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) |
| 31 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 41 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 43 | $C_2$ | \( ( 1 - 8 T + p T^{2} )^{2} \) |
| 47 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 53 | $C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 - 9 T + p T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 67 | $C_2$ | \( ( 1 - 5 T + p T^{2} )^{2} \) |
| 71 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 73 | $C_2$ | \( ( 1 + 7 T + p T^{2} )^{2} \) |
| 79 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 83 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 89 | $C_2$ | \( ( 1 + 12 T + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 + 10 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.937093458417137271218639490647, −9.488910467190776994037417053794, −8.684413720393242419277779815238, −8.165660732182309128185574185775, −7.944498198632498175704416365123, −7.73591843742988285704805588989, −7.14449686564876148233582580493, −5.81027585652647529822118508915, −5.56559135650201084358170066267, −5.32600053322851104543262796765, −3.98931312476793193392332292270, −2.99432139105097413830284496966, −2.80468657266648836263703727877, −2.16004950277651645615210004057, 0,
2.16004950277651645615210004057, 2.80468657266648836263703727877, 2.99432139105097413830284496966, 3.98931312476793193392332292270, 5.32600053322851104543262796765, 5.56559135650201084358170066267, 5.81027585652647529822118508915, 7.14449686564876148233582580493, 7.73591843742988285704805588989, 7.944498198632498175704416365123, 8.165660732182309128185574185775, 8.684413720393242419277779815238, 9.488910467190776994037417053794, 9.937093458417137271218639490647