Properties

Label 4-45e4-1.1-c3e2-0-2
Degree $4$
Conductor $4100625$
Sign $1$
Analytic cond. $14275.1$
Root an. cond. $10.9306$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s + 5·4-s − 10·7-s + 27·8-s + 42·11-s − 64·13-s − 30·14-s + 69·16-s + 18·17-s + 130·19-s + 126·22-s + 114·23-s − 192·26-s − 50·28-s + 240·29-s − 8·31-s + 27·32-s + 54·34-s − 184·37-s + 390·38-s − 672·41-s − 370·43-s + 210·44-s + 342·46-s − 276·47-s − 98·49-s − 320·52-s + ⋯
L(s)  = 1  + 1.06·2-s + 5/8·4-s − 0.539·7-s + 1.19·8-s + 1.15·11-s − 1.36·13-s − 0.572·14-s + 1.07·16-s + 0.256·17-s + 1.56·19-s + 1.22·22-s + 1.03·23-s − 1.44·26-s − 0.337·28-s + 1.53·29-s − 0.0463·31-s + 0.149·32-s + 0.272·34-s − 0.817·37-s + 1.66·38-s − 2.55·41-s − 1.31·43-s + 0.719·44-s + 1.09·46-s − 0.856·47-s − 2/7·49-s − 0.853·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4100625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4100625 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4100625\)    =    \(3^{8} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(14275.1\)
Root analytic conductor: \(10.9306\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 4100625,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.295431802\)
\(L(\frac12)\) \(\approx\) \(5.295431802\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2$D_{4}$ \( 1 - 3 T + p^{2} T^{2} - 3 p^{3} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 + 10 T + 198 T^{2} + 10 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 - 42 T + 3046 T^{2} - 42 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 + 64 T + 4905 T^{2} + 64 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 - 18 T + 1699 T^{2} - 18 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 130 T + 13326 T^{2} - 130 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 - 114 T + 20686 T^{2} - 114 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 - 240 T + 53545 T^{2} - 240 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 8 T + 26766 T^{2} + 8 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 184 T + 105153 T^{2} + 184 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 672 T + 239566 T^{2} + 672 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 370 T + 4482 p T^{2} + 370 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 276 T + 226462 T^{2} + 276 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2$ \( ( 1 - 162 T + p^{3} T^{2} )^{2} \)
59$D_{4}$ \( 1 + 204 T + 300550 T^{2} + 204 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 208 T + 193401 T^{2} - 208 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 802 T + 675630 T^{2} + 802 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 126 T + 534598 T^{2} + 126 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 - 374 T + 646791 T^{2} - 374 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 1378 T + 1460286 T^{2} - 1378 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 1164 T + 1339798 T^{2} - 1164 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 954 T + 816667 T^{2} + 954 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 872 T + 1964142 T^{2} - 872 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.063092873262496692475019714274, −8.569251609786680114024607780252, −8.085015178421102641522569469595, −7.75247411874144122379342016536, −7.24369361840146110128671741654, −6.79949486803704303058593079260, −6.74505589170069873367920780470, −6.39190331616703389462464936454, −5.57574655866817147420910222900, −5.20178940881510309539975765080, −4.85711008367053715685514991473, −4.83124468858562309444154868804, −4.00620300696818916470407866904, −3.65476248426657754007129212714, −3.13566621227458585058162403107, −2.96375898578411664562767134112, −2.16318191278434175318393542328, −1.52953136568009304547077347859, −1.21386162102165379302201800999, −0.39237977728001835308792477104, 0.39237977728001835308792477104, 1.21386162102165379302201800999, 1.52953136568009304547077347859, 2.16318191278434175318393542328, 2.96375898578411664562767134112, 3.13566621227458585058162403107, 3.65476248426657754007129212714, 4.00620300696818916470407866904, 4.83124468858562309444154868804, 4.85711008367053715685514991473, 5.20178940881510309539975765080, 5.57574655866817147420910222900, 6.39190331616703389462464936454, 6.74505589170069873367920780470, 6.79949486803704303058593079260, 7.24369361840146110128671741654, 7.75247411874144122379342016536, 8.085015178421102641522569469595, 8.569251609786680114024607780252, 9.063092873262496692475019714274

Graph of the $Z$-function along the critical line