Properties

Label 4-456300-1.1-c1e2-0-0
Degree $4$
Conductor $456300$
Sign $1$
Analytic cond. $29.0940$
Root an. cond. $2.32247$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4-s − 5·7-s + 9-s + 12-s + 13-s + 16-s + 19-s + 5·21-s + 25-s − 27-s + 5·28-s + 13·31-s − 36-s + 4·37-s − 39-s − 17·43-s − 48-s + 7·49-s − 52-s − 57-s − 10·61-s − 5·63-s − 64-s + 5·67-s − 12·73-s − 75-s + ⋯
L(s)  = 1  − 0.577·3-s − 1/2·4-s − 1.88·7-s + 1/3·9-s + 0.288·12-s + 0.277·13-s + 1/4·16-s + 0.229·19-s + 1.09·21-s + 1/5·25-s − 0.192·27-s + 0.944·28-s + 2.33·31-s − 1/6·36-s + 0.657·37-s − 0.160·39-s − 2.59·43-s − 0.144·48-s + 49-s − 0.138·52-s − 0.132·57-s − 1.28·61-s − 0.629·63-s − 1/8·64-s + 0.610·67-s − 1.40·73-s − 0.115·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 456300 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 456300 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(456300\)    =    \(2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(29.0940\)
Root analytic conductor: \(2.32247\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 456300,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6957031669\)
\(L(\frac12)\) \(\approx\) \(0.6957031669\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3$C_1$ \( 1 + T \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
13$C_2$ \( 1 - T + p T^{2} \)
good7$C_2$ \( ( 1 + T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 9 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 56 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 63 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 95 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + T + p T^{2} ) \)
83$C_2^2$ \( 1 - 134 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 68 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.634769676691059675473283175102, −8.117894573455935801809461203028, −7.70395100151010339738107783667, −7.02050367740557281051558463121, −6.55684705828307096003144671074, −6.27593584172535976829232752166, −6.03073677027748666534747854795, −5.14539291742820593469727213880, −4.89265680110243887977130886450, −4.21792046913955212476581047153, −3.62438617236192791170932718197, −3.12185107973177026266918502731, −2.65851797802163047719404235723, −1.46899302767754977256381095776, −0.48431574800842560447758169055, 0.48431574800842560447758169055, 1.46899302767754977256381095776, 2.65851797802163047719404235723, 3.12185107973177026266918502731, 3.62438617236192791170932718197, 4.21792046913955212476581047153, 4.89265680110243887977130886450, 5.14539291742820593469727213880, 6.03073677027748666534747854795, 6.27593584172535976829232752166, 6.55684705828307096003144671074, 7.02050367740557281051558463121, 7.70395100151010339738107783667, 8.117894573455935801809461203028, 8.634769676691059675473283175102

Graph of the $Z$-function along the critical line