Properties

Label 4-4560e2-1.1-c1e2-0-7
Degree $4$
Conductor $20793600$
Sign $1$
Analytic cond. $1325.81$
Root an. cond. $6.03421$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 2·5-s + 6·7-s + 3·9-s + 2·11-s − 6·13-s − 4·15-s − 2·19-s − 12·21-s + 12·23-s + 3·25-s − 4·27-s − 10·29-s + 4·31-s − 4·33-s + 12·35-s + 2·37-s + 12·39-s + 6·41-s + 6·43-s + 6·45-s + 20·47-s + 16·49-s + 4·55-s + 4·57-s + 12·59-s + 4·61-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.894·5-s + 2.26·7-s + 9-s + 0.603·11-s − 1.66·13-s − 1.03·15-s − 0.458·19-s − 2.61·21-s + 2.50·23-s + 3/5·25-s − 0.769·27-s − 1.85·29-s + 0.718·31-s − 0.696·33-s + 2.02·35-s + 0.328·37-s + 1.92·39-s + 0.937·41-s + 0.914·43-s + 0.894·45-s + 2.91·47-s + 16/7·49-s + 0.539·55-s + 0.529·57-s + 1.56·59-s + 0.512·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 20793600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20793600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(20793600\)    =    \(2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(1325.81\)
Root analytic conductor: \(6.03421\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{4560} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 20793600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.049784007\)
\(L(\frac12)\) \(\approx\) \(4.049784007\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{2} \)
5$C_1$ \( ( 1 - T )^{2} \)
19$C_1$ \( ( 1 + T )^{2} \)
good7$D_{4}$ \( 1 - 6 T + 20 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - 2 T - 4 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 6 T + 32 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
29$D_{4}$ \( 1 + 10 T + 56 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
37$D_{4}$ \( 1 - 2 T + 72 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 6 T + 16 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 6 T + 92 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$D_{4}$ \( 1 - 12 T + 142 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 4 T + 114 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 16 T + 150 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 4 T + 38 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 12 T + 134 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$D_{4}$ \( 1 + 24 T + 298 T^{2} + 24 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 2 T + 104 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 14 T + 168 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.358828168188679457268774325187, −8.328761330012303401628125071910, −7.45746371869388320442434644017, −7.37776275523501008851050789506, −7.10261496941497293184373385082, −6.91868543611799108073037920098, −6.12165620070890867583643427463, −5.87384596442732967011460762441, −5.38297948864944214045115863347, −5.35905127228373661277160862333, −4.74746767906813541435230605277, −4.70702086601384250192774259482, −4.14630576128860509960993824945, −3.88310350469084650567535850728, −2.90189722109224836749925520217, −2.49300375073771484602837124552, −2.05706948783891339377207549974, −1.68782608690726585425533945137, −0.931144616665847884703921901701, −0.77798017491722243677583252580, 0.77798017491722243677583252580, 0.931144616665847884703921901701, 1.68782608690726585425533945137, 2.05706948783891339377207549974, 2.49300375073771484602837124552, 2.90189722109224836749925520217, 3.88310350469084650567535850728, 4.14630576128860509960993824945, 4.70702086601384250192774259482, 4.74746767906813541435230605277, 5.35905127228373661277160862333, 5.38297948864944214045115863347, 5.87384596442732967011460762441, 6.12165620070890867583643427463, 6.91868543611799108073037920098, 7.10261496941497293184373385082, 7.37776275523501008851050789506, 7.45746371869388320442434644017, 8.328761330012303401628125071910, 8.358828168188679457268774325187

Graph of the $Z$-function along the critical line