| L(s) = 1 | − 2-s + 4-s − 4·5-s − 8-s − 6·9-s + 4·10-s + 16-s − 2·17-s + 6·18-s − 4·20-s + 2·25-s − 32-s + 2·34-s − 6·36-s − 8·37-s + 4·40-s − 12·41-s + 24·45-s + 49-s − 2·50-s − 12·53-s + 20·61-s + 64-s − 2·68-s + 6·72-s − 20·73-s + 8·74-s + ⋯ |
| L(s) = 1 | − 0.707·2-s + 1/2·4-s − 1.78·5-s − 0.353·8-s − 2·9-s + 1.26·10-s + 1/4·16-s − 0.485·17-s + 1.41·18-s − 0.894·20-s + 2/5·25-s − 0.176·32-s + 0.342·34-s − 36-s − 1.31·37-s + 0.632·40-s − 1.87·41-s + 3.57·45-s + 1/7·49-s − 0.282·50-s − 1.64·53-s + 2.56·61-s + 1/8·64-s − 0.242·68-s + 0.707·72-s − 2.34·73-s + 0.929·74-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 453152 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 453152 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.080485225562098313286905351335, −8.024463406411413208815234536452, −7.30473635612141536821000906080, −6.76626773482443698632812811275, −6.55401262849968600889826370986, −5.62672058490049396710575997042, −5.47236332424513932239582971582, −4.77922727113164880334613207685, −3.96511449610299471402331111472, −3.68463820290009014802243979664, −3.01385706794688684014407035010, −2.56493236008968775596152231873, −1.56306199757045232120398581261, 0, 0,
1.56306199757045232120398581261, 2.56493236008968775596152231873, 3.01385706794688684014407035010, 3.68463820290009014802243979664, 3.96511449610299471402331111472, 4.77922727113164880334613207685, 5.47236332424513932239582971582, 5.62672058490049396710575997042, 6.55401262849968600889826370986, 6.76626773482443698632812811275, 7.30473635612141536821000906080, 8.024463406411413208815234536452, 8.080485225562098313286905351335