Properties

Label 4-450e2-1.1-c3e2-0-6
Degree $4$
Conductor $202500$
Sign $1$
Analytic cond. $704.948$
Root an. cond. $5.15275$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s + 120·11-s + 16·16-s + 152·19-s + 12·29-s − 464·31-s − 468·41-s − 480·44-s − 338·49-s + 1.32e3·59-s − 980·61-s − 64·64-s − 240·71-s − 608·76-s − 304·79-s − 1.35e3·89-s − 1.59e3·101-s + 1.94e3·109-s − 48·116-s + 8.13e3·121-s + 1.85e3·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯
L(s)  = 1  − 1/2·4-s + 3.28·11-s + 1/4·16-s + 1.83·19-s + 0.0768·29-s − 2.68·31-s − 1.78·41-s − 1.64·44-s − 0.985·49-s + 2.91·59-s − 2.05·61-s − 1/8·64-s − 0.401·71-s − 0.917·76-s − 0.432·79-s − 1.61·89-s − 1.57·101-s + 1.70·109-s − 0.0384·116-s + 6.11·121-s + 1.34·124-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 202500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 202500 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(202500\)    =    \(2^{2} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(704.948\)
Root analytic conductor: \(5.15275\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 202500,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.891697116\)
\(L(\frac12)\) \(\approx\) \(2.891697116\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p^{2} T^{2} \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( 1 + 338 T^{2} + p^{6} T^{4} \)
11$C_2$ \( ( 1 - 60 T + p^{3} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 3238 T^{2} + p^{6} T^{4} \)
17$C_2^2$ \( 1 - 8062 T^{2} + p^{6} T^{4} \)
19$C_2$ \( ( 1 - 4 p T + p^{3} T^{2} )^{2} \)
23$C_2$ \( ( 1 - p^{3} T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p^{3} T^{2} )^{2} \)
31$C_2$ \( ( 1 + 232 T + p^{3} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 83350 T^{2} + p^{6} T^{4} \)
41$C_2$ \( ( 1 + 234 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( 1 + 10730 T^{2} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 78046 T^{2} + p^{6} T^{4} \)
53$C_2^2$ \( 1 - 248470 T^{2} + p^{6} T^{4} \)
59$C_2$ \( ( 1 - 660 T + p^{3} T^{2} )^{2} \)
61$C_2$ \( ( 1 + 490 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 57818 T^{2} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 120 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 221518 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 + 152 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 497158 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 678 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 190 p^{2} T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.41634391908890801855662568750, −10.36960486207413218562429654310, −9.635198483667549174820465745977, −9.628846829947841016113485089352, −9.200758631150008014799649441554, −8.629838067292762559393991131701, −8.504650111796543161488609042482, −7.48408825553197541344651142689, −7.24285252541707020506546643841, −6.71176049185541299580077309044, −6.34031533826960366872582671706, −5.56132103344646327153951873948, −5.31839359331918009536537271833, −4.47828883224516753490115609939, −3.94683224588907942385580563854, −3.57013973419933974095619786190, −3.10864917349973933654939251243, −1.61124761801604400487030980137, −1.56047244359457693387529961113, −0.59461831291699184534200897269, 0.59461831291699184534200897269, 1.56047244359457693387529961113, 1.61124761801604400487030980137, 3.10864917349973933654939251243, 3.57013973419933974095619786190, 3.94683224588907942385580563854, 4.47828883224516753490115609939, 5.31839359331918009536537271833, 5.56132103344646327153951873948, 6.34031533826960366872582671706, 6.71176049185541299580077309044, 7.24285252541707020506546643841, 7.48408825553197541344651142689, 8.504650111796543161488609042482, 8.629838067292762559393991131701, 9.200758631150008014799649441554, 9.628846829947841016113485089352, 9.635198483667549174820465745977, 10.36960486207413218562429654310, 11.41634391908890801855662568750

Graph of the $Z$-function along the critical line