Properties

Label 4-450e2-1.1-c2e2-0-9
Degree $4$
Conductor $202500$
Sign $1$
Analytic cond. $150.347$
Root an. cond. $3.50165$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s + 6·7-s − 24·11-s + 24·13-s − 12·14-s − 4·16-s + 24·17-s + 48·22-s + 6·23-s − 48·26-s + 12·28-s − 16·31-s + 8·32-s − 48·34-s + 96·37-s + 96·41-s + 54·43-s − 48·44-s − 12·46-s + 54·47-s + 18·49-s + 48·52-s − 24·53-s + 64·61-s + 32·62-s − 8·64-s + ⋯
L(s)  = 1  − 2-s + 1/2·4-s + 6/7·7-s − 2.18·11-s + 1.84·13-s − 6/7·14-s − 1/4·16-s + 1.41·17-s + 2.18·22-s + 6/23·23-s − 1.84·26-s + 3/7·28-s − 0.516·31-s + 1/4·32-s − 1.41·34-s + 2.59·37-s + 2.34·41-s + 1.25·43-s − 1.09·44-s − 0.260·46-s + 1.14·47-s + 0.367·49-s + 0.923·52-s − 0.452·53-s + 1.04·61-s + 0.516·62-s − 1/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 202500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 202500 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(202500\)    =    \(2^{2} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(150.347\)
Root analytic conductor: \(3.50165\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 202500,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.710069873\)
\(L(\frac12)\) \(\approx\) \(1.710069873\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p T^{2} \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p^{2} T^{3} + p^{4} T^{4} \)
11$C_2$ \( ( 1 + 12 T + p^{2} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 24 T + 288 T^{2} - 24 p^{2} T^{3} + p^{4} T^{4} \)
17$C_2^2$ \( 1 - 24 T + 288 T^{2} - 24 p^{2} T^{3} + p^{4} T^{4} \)
19$C_2^2$ \( 1 - 322 T^{2} + p^{4} T^{4} \)
23$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p^{2} T^{3} + p^{4} T^{4} \)
29$C_2^2$ \( 1 - 782 T^{2} + p^{4} T^{4} \)
31$C_2$ \( ( 1 + 8 T + p^{2} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 96 T + 4608 T^{2} - 96 p^{2} T^{3} + p^{4} T^{4} \)
41$C_2$ \( ( 1 - 48 T + p^{2} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 54 T + 1458 T^{2} - 54 p^{2} T^{3} + p^{4} T^{4} \)
47$C_2^2$ \( 1 - 54 T + 1458 T^{2} - 54 p^{2} T^{3} + p^{4} T^{4} \)
53$C_2^2$ \( 1 + 24 T + 288 T^{2} + 24 p^{2} T^{3} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 3362 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 - 32 T + p^{2} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p^{2} T^{3} + p^{4} T^{4} \)
71$C_2$ \( ( 1 - 48 T + p^{2} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 24 T + 288 T^{2} - 24 p^{2} T^{3} + p^{4} T^{4} \)
79$C_2^2$ \( 1 - 10882 T^{2} + p^{4} T^{4} \)
83$C_2^2$ \( 1 - 186 T + 17298 T^{2} - 186 p^{2} T^{3} + p^{4} T^{4} \)
89$C_2^2$ \( 1 - 14942 T^{2} + p^{4} T^{4} \)
97$C_2^2$ \( 1 + 24 T + 288 T^{2} + 24 p^{2} T^{3} + p^{4} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.98816700885998946765037781109, −10.65070665597727047068646486991, −10.32077341497812238302166671179, −9.763698402816044382839187809700, −9.081880756409868057477351844910, −9.061516409740485338344520988386, −8.136274755116591802529441643843, −7.946680033049022121071910728037, −7.71580436606128620507935154608, −7.37623227060207952863675107331, −6.24793164507256641198846913758, −6.09959465441499361278566382897, −5.24063989221777173485652052904, −5.21717934895737897723979751904, −4.14065018367742846364065204204, −3.76251780683402980053370759450, −2.64197868092256633405935035009, −2.44953680416428328450775306204, −1.19029877160003910635911488839, −0.77792245781875828776542141108, 0.77792245781875828776542141108, 1.19029877160003910635911488839, 2.44953680416428328450775306204, 2.64197868092256633405935035009, 3.76251780683402980053370759450, 4.14065018367742846364065204204, 5.21717934895737897723979751904, 5.24063989221777173485652052904, 6.09959465441499361278566382897, 6.24793164507256641198846913758, 7.37623227060207952863675107331, 7.71580436606128620507935154608, 7.946680033049022121071910728037, 8.136274755116591802529441643843, 9.061516409740485338344520988386, 9.081880756409868057477351844910, 9.763698402816044382839187809700, 10.32077341497812238302166671179, 10.65070665597727047068646486991, 10.98816700885998946765037781109

Graph of the $Z$-function along the critical line