Properties

Label 4-448e2-1.1-c5e2-0-9
Degree $4$
Conductor $200704$
Sign $1$
Analytic cond. $5162.70$
Root an. cond. $8.47655$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 14·3-s − 34·5-s + 98·7-s − 278·9-s + 420·11-s + 490·13-s + 476·15-s − 1.05e3·17-s + 1.24e3·19-s − 1.37e3·21-s + 504·23-s − 2.39e3·25-s + 7.12e3·27-s + 3.90e3·29-s − 2.04e3·31-s − 5.88e3·33-s − 3.33e3·35-s + 7.48e3·37-s − 6.86e3·39-s + 7.83e3·41-s + 1.03e4·43-s + 9.45e3·45-s − 4.19e4·47-s + 7.20e3·49-s + 1.47e4·51-s − 3.28e4·53-s − 1.42e4·55-s + ⋯
L(s)  = 1  − 0.898·3-s − 0.608·5-s + 0.755·7-s − 1.14·9-s + 1.04·11-s + 0.804·13-s + 0.546·15-s − 0.886·17-s + 0.791·19-s − 0.678·21-s + 0.198·23-s − 0.766·25-s + 1.88·27-s + 0.862·29-s − 0.382·31-s − 0.939·33-s − 0.459·35-s + 0.899·37-s − 0.722·39-s + 0.727·41-s + 0.852·43-s + 0.695·45-s − 2.77·47-s + 3/7·49-s + 0.795·51-s − 1.60·53-s − 0.636·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 200704 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200704 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(200704\)    =    \(2^{12} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(5162.70\)
Root analytic conductor: \(8.47655\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 200704,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$ \( ( 1 - p^{2} T )^{2} \)
good3$D_{4}$ \( 1 + 14 T + 158 p T^{2} + 14 p^{5} T^{3} + p^{10} T^{4} \)
5$D_{4}$ \( 1 + 34 T + 142 p^{2} T^{2} + 34 p^{5} T^{3} + p^{10} T^{4} \)
11$D_{4}$ \( 1 - 420 T + 237126 T^{2} - 420 p^{5} T^{3} + p^{10} T^{4} \)
13$D_{4}$ \( 1 - 490 T + 656150 T^{2} - 490 p^{5} T^{3} + p^{10} T^{4} \)
17$D_{4}$ \( 1 + 1056 T + 3106542 T^{2} + 1056 p^{5} T^{3} + p^{10} T^{4} \)
19$D_{4}$ \( 1 - 1246 T + 1618778 T^{2} - 1246 p^{5} T^{3} + p^{10} T^{4} \)
23$D_{4}$ \( 1 - 504 T + 12920574 T^{2} - 504 p^{5} T^{3} + p^{10} T^{4} \)
29$D_{4}$ \( 1 - 3904 T + 26647526 T^{2} - 3904 p^{5} T^{3} + p^{10} T^{4} \)
31$D_{4}$ \( 1 + 2044 T + 33160782 T^{2} + 2044 p^{5} T^{3} + p^{10} T^{4} \)
37$D_{4}$ \( 1 - 7488 T + 152693494 T^{2} - 7488 p^{5} T^{3} + p^{10} T^{4} \)
41$D_{4}$ \( 1 - 7832 T + 168604142 T^{2} - 7832 p^{5} T^{3} + p^{10} T^{4} \)
43$D_{4}$ \( 1 - 10332 T + 248230342 T^{2} - 10332 p^{5} T^{3} + p^{10} T^{4} \)
47$D_{4}$ \( 1 + 41972 T + 855029710 T^{2} + 41972 p^{5} T^{3} + p^{10} T^{4} \)
53$D_{4}$ \( 1 + 32812 T + 664801838 T^{2} + 32812 p^{5} T^{3} + p^{10} T^{4} \)
59$D_{4}$ \( 1 - 48398 T + 1851574618 T^{2} - 48398 p^{5} T^{3} + p^{10} T^{4} \)
61$D_{4}$ \( 1 - 718 T + 1677458142 T^{2} - 718 p^{5} T^{3} + p^{10} T^{4} \)
67$D_{4}$ \( 1 - 12824 T + 1908078582 T^{2} - 12824 p^{5} T^{3} + p^{10} T^{4} \)
71$D_{4}$ \( 1 + 103992 T + 6302476942 T^{2} + 103992 p^{5} T^{3} + p^{10} T^{4} \)
73$D_{4}$ \( 1 + 54100 T + 3096449510 T^{2} + 54100 p^{5} T^{3} + p^{10} T^{4} \)
79$D_{4}$ \( 1 + 64568 T + 7121481950 T^{2} + 64568 p^{5} T^{3} + p^{10} T^{4} \)
83$D_{4}$ \( 1 + 47810 T + 8432588842 T^{2} + 47810 p^{5} T^{3} + p^{10} T^{4} \)
89$D_{4}$ \( 1 + 17388 T - 1489722410 T^{2} + 17388 p^{5} T^{3} + p^{10} T^{4} \)
97$D_{4}$ \( 1 + 97296 T + 17237136142 T^{2} + 97296 p^{5} T^{3} + p^{10} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.05436907629880790266041945802, −9.693541535178159788734154730778, −8.910330385758526953282572011585, −8.846331968991987152509389926815, −8.120280171173026265591781371371, −8.008488603480707250055977223009, −7.22862415859453849616378937797, −6.72816457157074316928958576777, −6.11675349450060372758528321525, −6.00867165308730778338913093491, −5.25490249066543663511269665020, −4.88764250777606122588828515120, −4.15462741995678924823876809746, −3.88068302637140331410951495263, −2.97294597216531505117829511921, −2.58393632037907271137628295650, −1.31865695997644951658123201961, −1.27321673526094844829944574581, 0, 0, 1.27321673526094844829944574581, 1.31865695997644951658123201961, 2.58393632037907271137628295650, 2.97294597216531505117829511921, 3.88068302637140331410951495263, 4.15462741995678924823876809746, 4.88764250777606122588828515120, 5.25490249066543663511269665020, 6.00867165308730778338913093491, 6.11675349450060372758528321525, 6.72816457157074316928958576777, 7.22862415859453849616378937797, 8.008488603480707250055977223009, 8.120280171173026265591781371371, 8.846331968991987152509389926815, 8.910330385758526953282572011585, 9.693541535178159788734154730778, 10.05436907629880790266041945802

Graph of the $Z$-function along the critical line