Properties

Label 4-448e2-1.1-c1e2-0-36
Degree $4$
Conductor $200704$
Sign $1$
Analytic cond. $12.7970$
Root an. cond. $1.89137$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s − 4·7-s + 6·9-s − 4·19-s + 16·21-s − 2·25-s + 4·27-s − 12·29-s − 16·31-s + 4·37-s + 9·49-s − 12·53-s + 16·57-s − 12·59-s − 24·63-s + 8·75-s − 37·81-s + 12·83-s + 48·87-s + 64·93-s + 8·103-s − 28·109-s − 16·111-s − 36·113-s + 10·121-s + 127-s + 131-s + ⋯
L(s)  = 1  − 2.30·3-s − 1.51·7-s + 2·9-s − 0.917·19-s + 3.49·21-s − 2/5·25-s + 0.769·27-s − 2.22·29-s − 2.87·31-s + 0.657·37-s + 9/7·49-s − 1.64·53-s + 2.11·57-s − 1.56·59-s − 3.02·63-s + 0.923·75-s − 4.11·81-s + 1.31·83-s + 5.14·87-s + 6.63·93-s + 0.788·103-s − 2.68·109-s − 1.51·111-s − 3.38·113-s + 0.909·121-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 200704 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200704 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(200704\)    =    \(2^{12} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(12.7970\)
Root analytic conductor: \(1.89137\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 200704,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_2$ \( 1 + 4 T + p T^{2} \)
good3$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
61$C_2^2$ \( 1 - 110 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 98 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 146 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.94336339895565410128113947485, −10.62971877371711793557146197994, −10.21870597245114522757813265230, −9.543758927900699733677403390336, −9.075988472235495468184945208390, −9.042423861524244005037461886839, −7.82500027110748167675903211301, −7.63741190824055896911444704874, −6.69761540473636546177247356568, −6.66180970489436224321061865150, −6.08787052147051313098771959178, −5.66564929462574484923420618607, −5.40773577478471368199510590756, −4.79405130769669519368537773279, −3.95877480960822565011520621456, −3.55831391959659470619351593443, −2.66407455232218199344391484644, −1.60255508818230503477201738909, 0, 0, 1.60255508818230503477201738909, 2.66407455232218199344391484644, 3.55831391959659470619351593443, 3.95877480960822565011520621456, 4.79405130769669519368537773279, 5.40773577478471368199510590756, 5.66564929462574484923420618607, 6.08787052147051313098771959178, 6.66180970489436224321061865150, 6.69761540473636546177247356568, 7.63741190824055896911444704874, 7.82500027110748167675903211301, 9.042423861524244005037461886839, 9.075988472235495468184945208390, 9.543758927900699733677403390336, 10.21870597245114522757813265230, 10.62971877371711793557146197994, 10.94336339895565410128113947485

Graph of the $Z$-function along the critical line