L(s) = 1 | − 3-s + 9-s − 8·11-s + 6·25-s − 27-s + 8·33-s + 14·49-s + 8·59-s − 20·73-s − 6·75-s + 81-s + 8·83-s + 4·97-s − 8·99-s − 24·107-s + 26·121-s + 127-s + 131-s + 137-s + 139-s − 14·147-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/3·9-s − 2.41·11-s + 6/5·25-s − 0.192·27-s + 1.39·33-s + 2·49-s + 1.04·59-s − 2.34·73-s − 0.692·75-s + 1/9·81-s + 0.878·83-s + 0.406·97-s − 0.804·99-s − 2.32·107-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1.15·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + ⋯ |
Λ(s)=(=(442368s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(442368s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
442368
= 214⋅33
|
Sign: |
−1
|
Analytic conductor: |
28.2057 |
Root analytic conductor: |
2.30454 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 442368, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | 1+T |
good | 5 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 7 | C2 | (1−pT2)2 |
| 11 | C2 | (1+4T+pT2)2 |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 29 | C22 | 1−22T2+p2T4 |
| 31 | C22 | 1+2T2+p2T4 |
| 37 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1+pT2)2 |
| 53 | C22 | 1−102T2+p2T4 |
| 59 | C2 | (1−4T+pT2)2 |
| 61 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 67 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 71 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 73 | C2 | (1+10T+pT2)2 |
| 79 | C22 | 1−94T2+p2T4 |
| 83 | C2 | (1−4T+pT2)2 |
| 89 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 97 | C2 | (1−2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.236445515598692477888723219975, −7.926610475621468474965221388994, −7.39155350910112571498516060767, −7.08099310272590020465162708141, −6.54359139482422436566039922992, −5.85823971080050356977456524365, −5.48995581384585090744623344678, −5.15608716920273791676638800392, −4.63446424071817154248333823949, −4.09124569796799304831854781613, −3.27547083513429128978919773001, −2.66556849206542542189404706592, −2.25484300424030316326061471423, −1.08342707867212411461776876386, 0,
1.08342707867212411461776876386, 2.25484300424030316326061471423, 2.66556849206542542189404706592, 3.27547083513429128978919773001, 4.09124569796799304831854781613, 4.63446424071817154248333823949, 5.15608716920273791676638800392, 5.48995581384585090744623344678, 5.85823971080050356977456524365, 6.54359139482422436566039922992, 7.08099310272590020465162708141, 7.39155350910112571498516060767, 7.926610475621468474965221388994, 8.236445515598692477888723219975