Properties

Label 4-442368-1.1-c1e2-0-29
Degree $4$
Conductor $442368$
Sign $-1$
Analytic cond. $28.2057$
Root an. cond. $2.30454$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s − 8·11-s + 6·25-s − 27-s + 8·33-s + 14·49-s + 8·59-s − 20·73-s − 6·75-s + 81-s + 8·83-s + 4·97-s − 8·99-s − 24·107-s + 26·121-s + 127-s + 131-s + 137-s + 139-s − 14·147-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s − 2.41·11-s + 6/5·25-s − 0.192·27-s + 1.39·33-s + 2·49-s + 1.04·59-s − 2.34·73-s − 0.692·75-s + 1/9·81-s + 0.878·83-s + 0.406·97-s − 0.804·99-s − 2.32·107-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1.15·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 442368 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 442368 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(442368\)    =    \(2^{14} \cdot 3^{3}\)
Sign: $-1$
Analytic conductor: \(28.2057\)
Root analytic conductor: \(2.30454\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 442368,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 + T \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2$ \( ( 1 - p T^{2} )^{2} \)
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 102 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.236445515598692477888723219975, −7.926610475621468474965221388994, −7.39155350910112571498516060767, −7.08099310272590020465162708141, −6.54359139482422436566039922992, −5.85823971080050356977456524365, −5.48995581384585090744623344678, −5.15608716920273791676638800392, −4.63446424071817154248333823949, −4.09124569796799304831854781613, −3.27547083513429128978919773001, −2.66556849206542542189404706592, −2.25484300424030316326061471423, −1.08342707867212411461776876386, 0, 1.08342707867212411461776876386, 2.25484300424030316326061471423, 2.66556849206542542189404706592, 3.27547083513429128978919773001, 4.09124569796799304831854781613, 4.63446424071817154248333823949, 5.15608716920273791676638800392, 5.48995581384585090744623344678, 5.85823971080050356977456524365, 6.54359139482422436566039922992, 7.08099310272590020465162708141, 7.39155350910112571498516060767, 7.926610475621468474965221388994, 8.236445515598692477888723219975

Graph of the $Z$-function along the critical line