| L(s) = 1 | + 6·9-s + 2·11-s − 16·19-s − 20·29-s − 16·31-s − 4·41-s + 10·49-s − 8·59-s + 20·61-s − 8·79-s + 27·81-s − 12·89-s + 12·99-s + 28·101-s + 4·109-s + 3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 26·169-s − 96·171-s + ⋯ |
| L(s) = 1 | + 2·9-s + 0.603·11-s − 3.67·19-s − 3.71·29-s − 2.87·31-s − 0.624·41-s + 10/7·49-s − 1.04·59-s + 2.56·61-s − 0.900·79-s + 3·81-s − 1.27·89-s + 1.20·99-s + 2.78·101-s + 0.383·109-s + 3/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2·169-s − 7.34·171-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 19360000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19360000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.7431391575\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7431391575\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.643537153037795994690228853748, −8.233534680830904802576332703701, −7.60653758125453381460823461758, −7.29753960001246101262495865526, −7.28353569542483018708836282952, −6.73015654793833406618220027928, −6.50012029258434021074980432500, −5.93741964595754633704130381082, −5.70844906895903716326390942239, −5.20787547662399056070055629642, −4.74486459160823184004287558951, −4.20353733430988535345696739498, −3.99192640734493392743961311446, −3.76062417333265384353872895755, −3.49575347005544356926014876528, −2.32129383064925947799850511398, −2.03512810024324411219103687305, −1.86237394473426923529474242763, −1.32205053360290164875469187472, −0.22942666032940754763124551861,
0.22942666032940754763124551861, 1.32205053360290164875469187472, 1.86237394473426923529474242763, 2.03512810024324411219103687305, 2.32129383064925947799850511398, 3.49575347005544356926014876528, 3.76062417333265384353872895755, 3.99192640734493392743961311446, 4.20353733430988535345696739498, 4.74486459160823184004287558951, 5.20787547662399056070055629642, 5.70844906895903716326390942239, 5.93741964595754633704130381082, 6.50012029258434021074980432500, 6.73015654793833406618220027928, 7.28353569542483018708836282952, 7.29753960001246101262495865526, 7.60653758125453381460823461758, 8.233534680830904802576332703701, 8.643537153037795994690228853748