L(s) = 1 | − 2-s + 4-s − 2·5-s + 7-s − 8-s − 2·9-s + 2·10-s + 4·11-s − 10·13-s − 14-s + 16-s + 2·17-s + 2·18-s + 8·19-s − 2·20-s − 4·22-s + 4·23-s − 6·25-s + 10·26-s + 28-s − 32-s − 2·34-s − 2·35-s − 2·36-s + 8·37-s − 8·38-s + 2·40-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.377·7-s − 0.353·8-s − 2/3·9-s + 0.632·10-s + 1.20·11-s − 2.77·13-s − 0.267·14-s + 1/4·16-s + 0.485·17-s + 0.471·18-s + 1.83·19-s − 0.447·20-s − 0.852·22-s + 0.834·23-s − 6/5·25-s + 1.96·26-s + 0.188·28-s − 0.176·32-s − 0.342·34-s − 0.338·35-s − 1/3·36-s + 1.31·37-s − 1.29·38-s + 0.316·40-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 43904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7647117183\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7647117183\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_1$ | \( 1 + T \) |
| 7 | $C_1$ | \( 1 - T \) |
good | 3 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 5 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 11 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \) |
| 13 | $C_2$ | \( ( 1 + 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 17 | $C_2$$\times$$C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 19 | $C_2$$\times$$C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) |
| 23 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \) |
| 29 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 31 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 37 | $C_2$$\times$$C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) |
| 41 | $C_2$$\times$$C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 - 4 T + p T^{2} ) \) |
| 43 | $C_2$$\times$$C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 - 8 T + p T^{2} ) \) |
| 47 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 53 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 61 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 - 6 T + p T^{2} ) \) |
| 67 | $C_2$$\times$$C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 71 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 73 | $C_2$$\times$$C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \) |
| 79 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) |
| 83 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 89 | $C_2$$\times$$C_2$ | \( ( 1 + 6 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) |
| 97 | $C_2$$\times$$C_2$ | \( ( 1 + 10 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.6077730657, −14.6063543891, −14.2732762973, −13.7184344103, −12.7833382850, −12.3052609901, −12.0766817943, −11.6236635993, −11.2313614144, −10.8959615513, −9.76554711946, −9.67942670436, −9.42219427274, −8.68308196155, −7.92559843024, −7.57571100089, −7.34799266761, −6.77035761879, −5.57928681743, −5.57878625801, −4.46885810205, −4.01305938724, −2.93470599629, −2.40706782694, −0.873856170040,
0.873856170040, 2.40706782694, 2.93470599629, 4.01305938724, 4.46885810205, 5.57878625801, 5.57928681743, 6.77035761879, 7.34799266761, 7.57571100089, 7.92559843024, 8.68308196155, 9.42219427274, 9.67942670436, 9.76554711946, 10.8959615513, 11.2313614144, 11.6236635993, 12.0766817943, 12.3052609901, 12.7833382850, 13.7184344103, 14.2732762973, 14.6063543891, 14.6077730657