Properties

Label 4-43200-1.1-c1e2-0-11
Degree $4$
Conductor $43200$
Sign $1$
Analytic cond. $2.75446$
Root an. cond. $1.28827$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 8·7-s + 9-s − 12·13-s + 8·19-s + 8·21-s + 25-s + 27-s − 12·37-s − 12·39-s − 8·43-s + 34·49-s + 8·57-s + 12·61-s + 8·63-s − 8·67-s − 28·73-s + 75-s + 32·79-s + 81-s − 96·91-s + 4·97-s + 8·103-s − 20·109-s − 12·111-s − 12·117-s − 22·121-s + ⋯
L(s)  = 1  + 0.577·3-s + 3.02·7-s + 1/3·9-s − 3.32·13-s + 1.83·19-s + 1.74·21-s + 1/5·25-s + 0.192·27-s − 1.97·37-s − 1.92·39-s − 1.21·43-s + 34/7·49-s + 1.05·57-s + 1.53·61-s + 1.00·63-s − 0.977·67-s − 3.27·73-s + 0.115·75-s + 3.60·79-s + 1/9·81-s − 10.0·91-s + 0.406·97-s + 0.788·103-s − 1.91·109-s − 1.13·111-s − 1.10·117-s − 2·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43200 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43200 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(43200\)    =    \(2^{6} \cdot 3^{3} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2.75446\)
Root analytic conductor: \(1.28827\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 43200,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.010095125\)
\(L(\frac12)\) \(\approx\) \(2.010095125\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 - T \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good7$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.34021526003759803966464356447, −9.686400747849369995880150049093, −9.138788409882082860623313179234, −8.609245026512276947697146238421, −7.929044973464791963060046214031, −7.67822247307498044046677545125, −7.34594365176835478558310775458, −6.82423053307536595497404589251, −5.28897888504504330389281711769, −5.12597312940943561354086695880, −4.92167313563440441781925895939, −4.13728859524865050162716547657, −2.97865181251010540219662645668, −2.19180563382997996757520036314, −1.55129913823425505871935815725, 1.55129913823425505871935815725, 2.19180563382997996757520036314, 2.97865181251010540219662645668, 4.13728859524865050162716547657, 4.92167313563440441781925895939, 5.12597312940943561354086695880, 5.28897888504504330389281711769, 6.82423053307536595497404589251, 7.34594365176835478558310775458, 7.67822247307498044046677545125, 7.929044973464791963060046214031, 8.609245026512276947697146238421, 9.138788409882082860623313179234, 9.686400747849369995880150049093, 10.34021526003759803966464356447

Graph of the $Z$-function along the critical line