Properties

Label 4-42e4-1.1-c3e2-0-5
Degree $4$
Conductor $3111696$
Sign $1$
Analytic cond. $10832.5$
Root an. cond. $10.2019$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·5-s + 36·11-s − 124·13-s − 114·17-s − 76·19-s − 24·23-s + 125·25-s − 108·29-s − 112·31-s + 178·37-s + 756·41-s − 344·43-s + 192·47-s − 402·53-s − 216·55-s − 396·59-s + 254·61-s + 744·65-s + 1.01e3·67-s − 1.68e3·71-s + 890·73-s − 80·79-s − 216·83-s + 684·85-s + 1.63e3·89-s + 456·95-s − 2.02e3·97-s + ⋯
L(s)  = 1  − 0.536·5-s + 0.986·11-s − 2.64·13-s − 1.62·17-s − 0.917·19-s − 0.217·23-s + 25-s − 0.691·29-s − 0.648·31-s + 0.790·37-s + 2.87·41-s − 1.21·43-s + 0.595·47-s − 1.04·53-s − 0.529·55-s − 0.873·59-s + 0.533·61-s + 1.41·65-s + 1.84·67-s − 2.80·71-s + 1.42·73-s − 0.113·79-s − 0.285·83-s + 0.872·85-s + 1.95·89-s + 0.492·95-s − 2.11·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3111696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3111696 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3111696\)    =    \(2^{4} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(10832.5\)
Root analytic conductor: \(10.2019\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3111696,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.333235913\)
\(L(\frac12)\) \(\approx\) \(1.333235913\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5$C_2^2$ \( 1 + 6 T - 89 T^{2} + 6 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 - 36 T - 35 T^{2} - 36 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2$ \( ( 1 + 62 T + p^{3} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 114 T + 8083 T^{2} + 114 p^{3} T^{3} + p^{6} T^{4} \)
19$C_2^2$ \( 1 + 4 p T - 3 p^{2} T^{2} + 4 p^{4} T^{3} + p^{6} T^{4} \)
23$C_2^2$ \( 1 + 24 T - 11591 T^{2} + 24 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2$ \( ( 1 + 54 T + p^{3} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 112 T - 17247 T^{2} + 112 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2^2$ \( 1 - 178 T - 18969 T^{2} - 178 p^{3} T^{3} + p^{6} T^{4} \)
41$C_2$ \( ( 1 - 378 T + p^{3} T^{2} )^{2} \)
43$C_2$ \( ( 1 + 4 p T + p^{3} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 192 T - 66959 T^{2} - 192 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2^2$ \( 1 + 402 T + 12727 T^{2} + 402 p^{3} T^{3} + p^{6} T^{4} \)
59$C_2^2$ \( 1 + 396 T - 48563 T^{2} + 396 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 - 254 T - 162465 T^{2} - 254 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 - 1012 T + 723381 T^{2} - 1012 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 840 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 890 T + 403083 T^{2} - 890 p^{3} T^{3} + p^{6} T^{4} \)
79$C_2^2$ \( 1 + 80 T - 486639 T^{2} + 80 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2$ \( ( 1 + 108 T + p^{3} T^{2} )^{2} \)
89$C_2^2$ \( 1 - 1638 T + 1978075 T^{2} - 1638 p^{3} T^{3} + p^{6} T^{4} \)
97$C_2$ \( ( 1 + 1010 T + p^{3} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.029255558592590997349599013697, −8.923497652162725536121609070862, −8.377416197079429333854448799420, −7.82001890065565460814948374560, −7.52185868061613281143560104556, −7.23050638232465351042308915128, −6.69320365203738603565965598293, −6.57334375772520202614523992490, −5.91861075097303946200358644003, −5.52363707822920626694777538804, −4.74411503840821895583870477903, −4.67221805095848334298301244823, −4.23843192129614131371634627072, −3.88302496441562025885601956134, −3.06001763876551630952708410185, −2.70456784454764596783976509523, −2.01840154608359979620468136520, −1.92024308705085918366006901710, −0.73809328277203389995923891327, −0.33109818455107951230742245447, 0.33109818455107951230742245447, 0.73809328277203389995923891327, 1.92024308705085918366006901710, 2.01840154608359979620468136520, 2.70456784454764596783976509523, 3.06001763876551630952708410185, 3.88302496441562025885601956134, 4.23843192129614131371634627072, 4.67221805095848334298301244823, 4.74411503840821895583870477903, 5.52363707822920626694777538804, 5.91861075097303946200358644003, 6.57334375772520202614523992490, 6.69320365203738603565965598293, 7.23050638232465351042308915128, 7.52185868061613281143560104556, 7.82001890065565460814948374560, 8.377416197079429333854448799420, 8.923497652162725536121609070862, 9.029255558592590997349599013697

Graph of the $Z$-function along the critical line