Properties

Label 4-429e2-1.1-c1e2-0-2
Degree $4$
Conductor $184041$
Sign $-1$
Analytic cond. $11.7346$
Root an. cond. $1.85083$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 3·4-s + 3·9-s + 6·12-s − 2·13-s + 5·16-s − 4·17-s + 16·23-s − 6·25-s − 4·27-s − 12·29-s − 9·36-s + 4·39-s − 10·48-s + 2·49-s + 8·51-s + 6·52-s + 12·53-s + 12·61-s − 3·64-s + 12·68-s − 32·69-s + 12·75-s − 8·79-s + 5·81-s + 24·87-s − 48·92-s + ⋯
L(s)  = 1  − 1.15·3-s − 3/2·4-s + 9-s + 1.73·12-s − 0.554·13-s + 5/4·16-s − 0.970·17-s + 3.33·23-s − 6/5·25-s − 0.769·27-s − 2.22·29-s − 3/2·36-s + 0.640·39-s − 1.44·48-s + 2/7·49-s + 1.12·51-s + 0.832·52-s + 1.64·53-s + 1.53·61-s − 3/8·64-s + 1.45·68-s − 3.85·69-s + 1.38·75-s − 0.900·79-s + 5/9·81-s + 2.57·87-s − 5.00·92-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 184041 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 184041 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(184041\)    =    \(3^{2} \cdot 11^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(11.7346\)
Root analytic conductor: \(1.85083\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 184041,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + T )^{2} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
13$C_2$ \( 1 + 2 T + p T^{2} \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.975261543279013968212899152873, −8.768985116389244790636560898392, −7.82831259030341079249655300429, −7.46995816184461358823952634116, −6.87625566807413692768701148012, −6.57112145512025234345666775516, −5.59092668167682561675172765450, −5.31622482563829752699303340190, −5.10830147517302686718916077334, −4.20407903283329927801590362766, −4.11432405402007502173846810332, −3.20967362704724919819221481375, −2.18490783609343058155048362276, −1.01190903051797145927138124185, 0, 1.01190903051797145927138124185, 2.18490783609343058155048362276, 3.20967362704724919819221481375, 4.11432405402007502173846810332, 4.20407903283329927801590362766, 5.10830147517302686718916077334, 5.31622482563829752699303340190, 5.59092668167682561675172765450, 6.57112145512025234345666775516, 6.87625566807413692768701148012, 7.46995816184461358823952634116, 7.82831259030341079249655300429, 8.768985116389244790636560898392, 8.975261543279013968212899152873

Graph of the $Z$-function along the critical line