Properties

Label 4-4284e2-1.1-c1e2-0-4
Degree $4$
Conductor $18352656$
Sign $1$
Analytic cond. $1170.18$
Root an. cond. $5.84875$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2·7-s + 6·13-s − 2·17-s + 6·19-s − 6·25-s + 5·31-s + 2·35-s + 2·37-s + 3·41-s + 11·43-s − 2·47-s + 3·49-s + 11·53-s − 4·59-s − 5·61-s + 6·65-s − 7·67-s − 6·71-s − 5·73-s + 18·79-s − 12·83-s − 2·85-s + 26·89-s + 12·91-s + 6·95-s − 9·97-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.755·7-s + 1.66·13-s − 0.485·17-s + 1.37·19-s − 6/5·25-s + 0.898·31-s + 0.338·35-s + 0.328·37-s + 0.468·41-s + 1.67·43-s − 0.291·47-s + 3/7·49-s + 1.51·53-s − 0.520·59-s − 0.640·61-s + 0.744·65-s − 0.855·67-s − 0.712·71-s − 0.585·73-s + 2.02·79-s − 1.31·83-s − 0.216·85-s + 2.75·89-s + 1.25·91-s + 0.615·95-s − 0.913·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18352656 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18352656 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(18352656\)    =    \(2^{4} \cdot 3^{4} \cdot 7^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1170.18\)
Root analytic conductor: \(5.84875\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 18352656,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.619617716\)
\(L(\frac12)\) \(\approx\) \(4.619617716\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_1$ \( ( 1 - T )^{2} \)
17$C_1$ \( ( 1 + T )^{2} \)
good5$D_{4}$ \( 1 - T + 7 T^{2} - p T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$D_{4}$ \( 1 - 6 T + 22 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 6 T + 34 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$D_{4}$ \( 1 - 5 T + 65 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 2 T + 62 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 3 T + 55 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 11 T + 113 T^{2} - 11 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 2 T + 82 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 11 T + 133 T^{2} - 11 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 4 T + 70 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 5 T + 99 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 7 T + 143 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 6 T + 34 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 5 T + 123 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 18 T + 226 T^{2} - 18 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
89$D_{4}$ \( 1 - 26 T + 334 T^{2} - 26 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 9 T + 211 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.413667052895231905269585319245, −8.312221170000839073251357970616, −7.75151030425490729981516164182, −7.65705935279234566340282350770, −7.10389694933936418954119087365, −6.80071084547504318702766169108, −6.13841348612126649168166510717, −6.07385064255685252344337114756, −5.58713381178498715273151011829, −5.46195039768466721318032710249, −4.74240679608196964719085534582, −4.45682831339284094802878470208, −3.99365513929709601846282306303, −3.74125701247911617777978494011, −2.92800713428309059345534433600, −2.90743018769467865146798896447, −1.99354253016083482081161234246, −1.79095117409260482289328532715, −1.07253998566146547319456218513, −0.70475026488933325424144263335, 0.70475026488933325424144263335, 1.07253998566146547319456218513, 1.79095117409260482289328532715, 1.99354253016083482081161234246, 2.90743018769467865146798896447, 2.92800713428309059345534433600, 3.74125701247911617777978494011, 3.99365513929709601846282306303, 4.45682831339284094802878470208, 4.74240679608196964719085534582, 5.46195039768466721318032710249, 5.58713381178498715273151011829, 6.07385064255685252344337114756, 6.13841348612126649168166510717, 6.80071084547504318702766169108, 7.10389694933936418954119087365, 7.65705935279234566340282350770, 7.75151030425490729981516164182, 8.312221170000839073251357970616, 8.413667052895231905269585319245

Graph of the $Z$-function along the critical line