Properties

Label 4-425e2-1.1-c3e2-0-5
Degree $4$
Conductor $180625$
Sign $1$
Analytic cond. $628.796$
Root an. cond. $5.00757$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7·4-s − 46·9-s − 60·11-s − 15·16-s − 208·19-s + 132·29-s + 388·31-s − 322·36-s − 252·41-s − 420·44-s + 202·49-s − 864·59-s − 1.22e3·61-s − 553·64-s − 348·71-s − 1.45e3·76-s − 796·79-s + 1.38e3·81-s − 1.26e3·89-s + 2.76e3·99-s − 2.46e3·101-s − 1.22e3·109-s + 924·116-s + 38·121-s + 2.71e3·124-s + 127-s + 131-s + ⋯
L(s)  = 1  + 7/8·4-s − 1.70·9-s − 1.64·11-s − 0.234·16-s − 2.51·19-s + 0.845·29-s + 2.24·31-s − 1.49·36-s − 0.959·41-s − 1.43·44-s + 0.588·49-s − 1.90·59-s − 2.56·61-s − 1.08·64-s − 0.581·71-s − 2.19·76-s − 1.13·79-s + 1.90·81-s − 1.50·89-s + 2.80·99-s − 2.42·101-s − 1.07·109-s + 0.739·116-s + 0.0285·121-s + 1.96·124-s + 0.000698·127-s + 0.000666·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 180625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180625 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(180625\)    =    \(5^{4} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(628.796\)
Root analytic conductor: \(5.00757\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 180625,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
17$C_2$ \( 1 + p^{2} T^{2} \)
good2$C_2^2$ \( 1 - 7 T^{2} + p^{6} T^{4} \)
3$C_2^2$ \( 1 + 46 T^{2} + p^{6} T^{4} \)
7$C_2^2$ \( 1 - 202 T^{2} + p^{6} T^{4} \)
11$C_2$ \( ( 1 + 30 T + p^{3} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 2278 T^{2} + p^{6} T^{4} \)
19$C_2$ \( ( 1 + 104 T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 22570 T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 - 66 T + p^{3} T^{2} )^{2} \)
31$C_2$ \( ( 1 - 194 T + p^{3} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 58870 T^{2} + p^{6} T^{4} \)
41$C_2$ \( ( 1 + 126 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 8470 T^{2} + p^{6} T^{4} \)
47$C_2^2$ \( 1 + 83954 T^{2} + p^{6} T^{4} \)
53$C_2^2$ \( 1 - 291670 T^{2} + p^{6} T^{4} \)
59$C_2$ \( ( 1 + 432 T + p^{3} T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10 p T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 117578 T^{2} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 174 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 646990 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 + 398 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 457990 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 630 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 + 382850 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.61406195755511322340145654864, −10.41243398525853930244559124135, −9.717582541826570954763122946192, −9.002504410272909045244761497841, −8.605255457985561724442613959472, −8.096343792674737553908227858991, −8.084760451494656375176077203794, −7.24903915941787346754182018648, −6.66260908414996070240397985392, −6.12300832119409654756342597977, −6.06553492985283713231707035219, −5.25095487018032995576094575912, −4.66357555434667859352350636077, −4.26135670094577363948482707570, −3.08168957013147942596082013563, −2.67804981185690727043470448689, −2.49262090035755248090166009305, −1.53445848275965997101231738413, 0, 0, 1.53445848275965997101231738413, 2.49262090035755248090166009305, 2.67804981185690727043470448689, 3.08168957013147942596082013563, 4.26135670094577363948482707570, 4.66357555434667859352350636077, 5.25095487018032995576094575912, 6.06553492985283713231707035219, 6.12300832119409654756342597977, 6.66260908414996070240397985392, 7.24903915941787346754182018648, 8.084760451494656375176077203794, 8.096343792674737553908227858991, 8.605255457985561724442613959472, 9.002504410272909045244761497841, 9.717582541826570954763122946192, 10.41243398525853930244559124135, 10.61406195755511322340145654864

Graph of the $Z$-function along the critical line