Properties

Label 4-425e2-1.1-c3e2-0-0
Degree $4$
Conductor $180625$
Sign $1$
Analytic cond. $628.796$
Root an. cond. $5.00757$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7·4-s + 5·9-s − 128·11-s − 15·16-s + 98·19-s − 310·29-s − 394·31-s + 35·36-s − 524·41-s − 896·44-s + 202·49-s + 666·59-s − 710·61-s − 553·64-s + 94·71-s + 686·76-s + 768·79-s − 704·81-s − 1.02e3·89-s − 640·99-s − 1.10e3·101-s + 982·109-s − 2.17e3·116-s + 9.62e3·121-s − 2.75e3·124-s + 127-s + 131-s + ⋯
L(s)  = 1  + 7/8·4-s + 5/27·9-s − 3.50·11-s − 0.234·16-s + 1.18·19-s − 1.98·29-s − 2.28·31-s + 0.162·36-s − 1.99·41-s − 3.06·44-s + 0.588·49-s + 1.46·59-s − 1.49·61-s − 1.08·64-s + 0.157·71-s + 1.03·76-s + 1.09·79-s − 0.965·81-s − 1.21·89-s − 0.649·99-s − 1.08·101-s + 0.862·109-s − 1.73·116-s + 7.23·121-s − 1.99·124-s + 0.000698·127-s + 0.000666·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 180625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180625 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(180625\)    =    \(5^{4} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(628.796\)
Root analytic conductor: \(5.00757\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 180625,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.2622649162\)
\(L(\frac12)\) \(\approx\) \(0.2622649162\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
17$C_2$ \( 1 + p^{2} T^{2} \)
good2$C_2^2$ \( 1 - 7 T^{2} + p^{6} T^{4} \)
3$C_2^2$ \( 1 - 5 T^{2} + p^{6} T^{4} \)
7$C_2^2$ \( 1 - 202 T^{2} + p^{6} T^{4} \)
11$C_2$ \( ( 1 + 64 T + p^{3} T^{2} )^{2} \)
13$C_2^2$ \( 1 + 935 T^{2} + p^{6} T^{4} \)
19$C_2$ \( ( 1 - 49 T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 12234 T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 + 155 T + p^{3} T^{2} )^{2} \)
31$C_2$ \( ( 1 + 197 T + p^{3} T^{2} )^{2} \)
37$C_2^2$ \( 1 + 37078 T^{2} + p^{6} T^{4} \)
41$C_2$ \( ( 1 + 262 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 50 p^{2} T^{2} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 207477 T^{2} + p^{6} T^{4} \)
53$C_2^2$ \( 1 + 128655 T^{2} + p^{6} T^{4} \)
59$C_2$ \( ( 1 - 333 T + p^{3} T^{2} )^{2} \)
61$C_2$ \( ( 1 + 355 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 61070 T^{2} + p^{6} T^{4} \)
71$C_2$ \( ( 1 - 47 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 587065 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 - 384 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 601878 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 511 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 1536977 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.26686393124493063682663692122, −10.67648762926406493718688872876, −10.00895928951662892675725726915, −9.969677708016068659007001447033, −9.143450675301090011209132432820, −8.721083287934512315851003840689, −7.997802593812253972865844988155, −7.68959009995579330660960144869, −7.24380984612948277756617058076, −7.15870408777292950918597690960, −6.20843508144894216410643501484, −5.54211505773935280557794621561, −5.23277594110335367202037789529, −5.08393073675369777514031528193, −3.97028971865974904010959001297, −3.29657254758631081852671379596, −2.75934179290541151310672882166, −2.20060047896779106553108096465, −1.64490016320848755474632482515, −0.15215643163665453418015397651, 0.15215643163665453418015397651, 1.64490016320848755474632482515, 2.20060047896779106553108096465, 2.75934179290541151310672882166, 3.29657254758631081852671379596, 3.97028971865974904010959001297, 5.08393073675369777514031528193, 5.23277594110335367202037789529, 5.54211505773935280557794621561, 6.20843508144894216410643501484, 7.15870408777292950918597690960, 7.24380984612948277756617058076, 7.68959009995579330660960144869, 7.997802593812253972865844988155, 8.721083287934512315851003840689, 9.143450675301090011209132432820, 9.969677708016068659007001447033, 10.00895928951662892675725726915, 10.67648762926406493718688872876, 11.26686393124493063682663692122

Graph of the $Z$-function along the critical line