Properties

Label 4-425e2-1.1-c1e2-0-0
Degree $4$
Conductor $180625$
Sign $1$
Analytic cond. $11.5168$
Root an. cond. $1.84218$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 3·4-s − 6·7-s + 2·9-s − 6·11-s − 6·12-s + 5·16-s + 8·17-s + 12·21-s − 2·23-s − 6·27-s − 18·28-s + 6·29-s − 2·31-s + 12·33-s + 6·36-s − 6·37-s − 6·41-s − 18·44-s + 4·47-s − 10·48-s + 18·49-s − 16·51-s + 2·61-s − 12·63-s + 3·64-s + 12·67-s + ⋯
L(s)  = 1  − 1.15·3-s + 3/2·4-s − 2.26·7-s + 2/3·9-s − 1.80·11-s − 1.73·12-s + 5/4·16-s + 1.94·17-s + 2.61·21-s − 0.417·23-s − 1.15·27-s − 3.40·28-s + 1.11·29-s − 0.359·31-s + 2.08·33-s + 36-s − 0.986·37-s − 0.937·41-s − 2.71·44-s + 0.583·47-s − 1.44·48-s + 18/7·49-s − 2.24·51-s + 0.256·61-s − 1.51·63-s + 3/8·64-s + 1.46·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 180625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(180625\)    =    \(5^{4} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(11.5168\)
Root analytic conductor: \(1.84218\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 180625,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8263459818\)
\(L(\frac12)\) \(\approx\) \(0.8263459818\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
17$C_2$ \( 1 - 8 T + p T^{2} \)
good2$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
3$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 102 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 14 T + 98 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 150 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.92351263353758655517547923465, −10.85288534787206863613664780116, −10.52651583056021977505408685280, −10.17638680979767677528936888510, −9.735353948737950290286309512124, −9.637382338936088951922805099041, −8.554667927277463650858942720792, −8.023010886338626353670450989520, −7.52990186095398680341139091394, −7.01810061752613472156754052628, −6.76714988496951488910683409710, −6.11787150208091906409812956620, −5.84959385588803731290290142881, −5.43728157632445237146996716750, −4.90685685004734445533013436417, −3.62961153618714600773447475715, −3.34266943572032839851220758708, −2.74580015880356677509674999510, −2.02401108121806693620180645918, −0.58750809406244438518557466809, 0.58750809406244438518557466809, 2.02401108121806693620180645918, 2.74580015880356677509674999510, 3.34266943572032839851220758708, 3.62961153618714600773447475715, 4.90685685004734445533013436417, 5.43728157632445237146996716750, 5.84959385588803731290290142881, 6.11787150208091906409812956620, 6.76714988496951488910683409710, 7.01810061752613472156754052628, 7.52990186095398680341139091394, 8.023010886338626353670450989520, 8.554667927277463650858942720792, 9.637382338936088951922805099041, 9.735353948737950290286309512124, 10.17638680979767677528936888510, 10.52651583056021977505408685280, 10.85288534787206863613664780116, 11.92351263353758655517547923465

Graph of the $Z$-function along the critical line