Properties

Label 4-416e2-1.1-c1e2-0-23
Degree $4$
Conductor $173056$
Sign $1$
Analytic cond. $11.0342$
Root an. cond. $1.82257$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·3-s + 21·9-s − 4·13-s − 10·17-s − 12·23-s + 25-s − 54·27-s − 8·29-s + 24·39-s − 6·43-s + 13·49-s + 60·51-s − 4·53-s − 24·61-s + 72·69-s − 6·75-s + 12·79-s + 108·81-s + 48·87-s − 8·101-s − 12·103-s + 24·107-s − 28·113-s − 84·117-s + 6·121-s + 127-s + 36·129-s + ⋯
L(s)  = 1  − 3.46·3-s + 7·9-s − 1.10·13-s − 2.42·17-s − 2.50·23-s + 1/5·25-s − 10.3·27-s − 1.48·29-s + 3.84·39-s − 0.914·43-s + 13/7·49-s + 8.40·51-s − 0.549·53-s − 3.07·61-s + 8.66·69-s − 0.692·75-s + 1.35·79-s + 12·81-s + 5.14·87-s − 0.796·101-s − 1.18·103-s + 2.32·107-s − 2.63·113-s − 7.76·117-s + 6/11·121-s + 0.0887·127-s + 3.16·129-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 173056 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 173056 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(173056\)    =    \(2^{10} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(11.0342\)
Root analytic conductor: \(1.82257\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 173056,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
13$C_2$ \( 1 + 4 T + p T^{2} \)
good3$C_2$ \( ( 1 + p T + p T^{2} )^{2} \)
5$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 65 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 45 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 114 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 21 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.90058415489492309293663788560, −10.72301841796029202465661168657, −10.45065652592070170228992426050, −9.867705803055531930194665540861, −9.428483445700316367073144700927, −8.924066083756116351624652023821, −7.944595749674271891760273873132, −7.46646046416840431551234300796, −7.00599394138295271063141268226, −6.47010685473241215068343474096, −6.20214531995203480907610222723, −5.83759866425758622327451266892, −5.10019492592589482081221636138, −4.96700719456017829763534961263, −4.12187527325456957596345917235, −4.11737137647606119361774060872, −2.31848070166838050919277286340, −1.58958060048972467946282313599, 0, 0, 1.58958060048972467946282313599, 2.31848070166838050919277286340, 4.11737137647606119361774060872, 4.12187527325456957596345917235, 4.96700719456017829763534961263, 5.10019492592589482081221636138, 5.83759866425758622327451266892, 6.20214531995203480907610222723, 6.47010685473241215068343474096, 7.00599394138295271063141268226, 7.46646046416840431551234300796, 7.944595749674271891760273873132, 8.924066083756116351624652023821, 9.428483445700316367073144700927, 9.867705803055531930194665540861, 10.45065652592070170228992426050, 10.72301841796029202465661168657, 10.90058415489492309293663788560

Graph of the $Z$-function along the critical line