Properties

Label 4-40e4-1.1-c1e2-0-42
Degree $4$
Conductor $2560000$
Sign $1$
Analytic cond. $163.227$
Root an. cond. $3.57436$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 6·7-s + 2·9-s + 6·13-s − 2·17-s + 8·19-s + 12·21-s − 2·23-s − 6·27-s − 2·37-s − 12·39-s − 20·41-s − 10·43-s − 6·47-s + 18·49-s + 4·51-s − 10·53-s − 16·57-s − 24·59-s − 4·61-s − 12·63-s + 2·67-s + 4·69-s − 2·73-s − 16·79-s + 11·81-s − 10·83-s + ⋯
L(s)  = 1  − 1.15·3-s − 2.26·7-s + 2/3·9-s + 1.66·13-s − 0.485·17-s + 1.83·19-s + 2.61·21-s − 0.417·23-s − 1.15·27-s − 0.328·37-s − 1.92·39-s − 3.12·41-s − 1.52·43-s − 0.875·47-s + 18/7·49-s + 0.560·51-s − 1.37·53-s − 2.11·57-s − 3.12·59-s − 0.512·61-s − 1.51·63-s + 0.244·67-s + 0.481·69-s − 0.234·73-s − 1.80·79-s + 11/9·81-s − 1.09·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2560000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2560000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2560000\)    =    \(2^{12} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(163.227\)
Root analytic conductor: \(3.57436\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 2560000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + 10 T + 50 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 138 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 10 T + 50 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
97$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.492720387548640946458888795814, −8.912927045451480904730248988512, −8.283539223919954088699060381263, −8.238087443664100648297461376930, −7.35466130558282302581545567147, −7.08197431740022071042206041486, −6.60444173453214833013871216286, −6.40693536831449581400013557028, −5.89290166053203571505447211701, −5.81728526750977657581662811718, −5.14296477111565930907404971565, −4.76596156559381746265679850396, −4.08010266609314751459190029639, −3.43677035799624185483612676385, −3.26524033774252583616087916396, −3.00867318863603356950809490039, −1.68082192265665586254738887024, −1.38134933259869946030630000976, 0, 0, 1.38134933259869946030630000976, 1.68082192265665586254738887024, 3.00867318863603356950809490039, 3.26524033774252583616087916396, 3.43677035799624185483612676385, 4.08010266609314751459190029639, 4.76596156559381746265679850396, 5.14296477111565930907404971565, 5.81728526750977657581662811718, 5.89290166053203571505447211701, 6.40693536831449581400013557028, 6.60444173453214833013871216286, 7.08197431740022071042206041486, 7.35466130558282302581545567147, 8.238087443664100648297461376930, 8.283539223919954088699060381263, 8.912927045451480904730248988512, 9.492720387548640946458888795814

Graph of the $Z$-function along the critical line