Properties

Label 4-40e4-1.1-c1e2-0-33
Degree $4$
Conductor $2560000$
Sign $1$
Analytic cond. $163.227$
Root an. cond. $3.57436$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 6·7-s + 2·9-s + 12·21-s − 2·23-s + 6·27-s + 24·41-s − 18·43-s − 14·47-s + 18·49-s + 16·61-s + 12·63-s − 6·67-s − 4·69-s + 11·81-s + 22·83-s + 36·101-s + 18·103-s − 26·107-s + 22·121-s + 48·123-s + 127-s − 36·129-s + 131-s + 137-s + 139-s − 28·141-s + ⋯
L(s)  = 1  + 1.15·3-s + 2.26·7-s + 2/3·9-s + 2.61·21-s − 0.417·23-s + 1.15·27-s + 3.74·41-s − 2.74·43-s − 2.04·47-s + 18/7·49-s + 2.04·61-s + 1.51·63-s − 0.733·67-s − 0.481·69-s + 11/9·81-s + 2.41·83-s + 3.58·101-s + 1.77·103-s − 2.51·107-s + 2·121-s + 4.32·123-s + 0.0887·127-s − 3.16·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 2.35·141-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2560000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2560000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2560000\)    =    \(2^{12} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(163.227\)
Root analytic conductor: \(3.57436\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2560000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.399593892\)
\(L(\frac12)\) \(\approx\) \(5.399593892\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - p T^{2} )^{2} \)
13$C_2^2$ \( 1 + p^{2} T^{4} \)
17$C_2^2$ \( 1 + p^{2} T^{4} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - p T^{2} )^{2} \)
37$C_2^2$ \( 1 + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + 18 T + 162 T^{2} + 18 p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 14 T + 98 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + p^{2} T^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - p T^{2} )^{2} \)
73$C_2^2$ \( 1 + p^{2} T^{4} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 22 T + 242 T^{2} - 22 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.408763275244201971869349750839, −9.193695830727847441299908954251, −8.554274151530085979335989973428, −8.458307799155253732547424686946, −7.996998356327819580249694621112, −7.908630604460117896774675840808, −7.31014811781256623610243778469, −7.08379155667793190431818848662, −6.25004377847683493159872062077, −6.11636726984132640216053581543, −5.28459583820797802653985419818, −4.92200478730739720731155649436, −4.67419135441479636121059417838, −4.22093113621251028108449619760, −3.55042703931782608738695196740, −3.23156886543503515115445643165, −2.26194430081822144363307138131, −2.25784406623962292843365434031, −1.51821692617085132752827091846, −0.900959785717195410354393173937, 0.900959785717195410354393173937, 1.51821692617085132752827091846, 2.25784406623962292843365434031, 2.26194430081822144363307138131, 3.23156886543503515115445643165, 3.55042703931782608738695196740, 4.22093113621251028108449619760, 4.67419135441479636121059417838, 4.92200478730739720731155649436, 5.28459583820797802653985419818, 6.11636726984132640216053581543, 6.25004377847683493159872062077, 7.08379155667793190431818848662, 7.31014811781256623610243778469, 7.908630604460117896774675840808, 7.996998356327819580249694621112, 8.458307799155253732547424686946, 8.554274151530085979335989973428, 9.193695830727847441299908954251, 9.408763275244201971869349750839

Graph of the $Z$-function along the critical line