L(s) = 1 | + 6·9-s − 20·29-s + 20·41-s + 14·49-s + 20·61-s + 27·81-s − 20·89-s + 4·101-s + 12·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯ |
L(s) = 1 | + 2·9-s − 3.71·29-s + 3.12·41-s + 2·49-s + 2.56·61-s + 3·81-s − 2.11·89-s + 0.398·101-s + 1.14·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2560000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2560000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.750074327\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.750074327\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 5 | | \( 1 \) |
good | 3 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 7 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 11 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 13 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 17 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 19 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 23 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 + 10 T + p T^{2} )^{2} \) |
| 31 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 37 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 41 | $C_2$ | \( ( 1 - 10 T + p T^{2} )^{2} \) |
| 43 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 47 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 53 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 - 10 T + p T^{2} )^{2} \) |
| 67 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 71 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) |
| 79 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 83 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 89 | $C_2$ | \( ( 1 + 10 T + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.421389577647872954165604973444, −9.379985788756507890248421986987, −9.016694792407669942144884550905, −8.400361364554562061744997916979, −7.81098404526705947035644607784, −7.57493599446690188721245822483, −7.16211540055356908696640317727, −7.07700643386195257397833728416, −6.42305597257860151217384376818, −5.87475744794244571478260991634, −5.47609993860249359551185515327, −5.24094691624264550546619660031, −4.29583604653231160094339269388, −4.16525659046008017832538891650, −3.90274935645140785862603538659, −3.28514445811830652857474085937, −2.34529288830870757534092297515, −2.09752032955479824021626459538, −1.37774851511004780680395899227, −0.68967941519025122210458517661,
0.68967941519025122210458517661, 1.37774851511004780680395899227, 2.09752032955479824021626459538, 2.34529288830870757534092297515, 3.28514445811830652857474085937, 3.90274935645140785862603538659, 4.16525659046008017832538891650, 4.29583604653231160094339269388, 5.24094691624264550546619660031, 5.47609993860249359551185515327, 5.87475744794244571478260991634, 6.42305597257860151217384376818, 7.07700643386195257397833728416, 7.16211540055356908696640317727, 7.57493599446690188721245822483, 7.81098404526705947035644607784, 8.400361364554562061744997916979, 9.016694792407669942144884550905, 9.379985788756507890248421986987, 9.421389577647872954165604973444