Properties

Label 4-40e4-1.1-c0e2-0-4
Degree $4$
Conductor $2560000$
Sign $1$
Analytic cond. $0.637608$
Root an. cond. $0.893590$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 2·7-s + 2·9-s + 4·21-s − 2·23-s + 2·27-s − 2·43-s − 2·47-s + 2·49-s + 4·63-s − 2·67-s − 4·69-s + 3·81-s − 2·83-s − 4·101-s + 2·103-s + 2·107-s − 2·121-s + 127-s − 4·129-s + 131-s + 137-s + 139-s − 4·141-s + 4·147-s + 149-s + 151-s + ⋯
L(s)  = 1  + 2·3-s + 2·7-s + 2·9-s + 4·21-s − 2·23-s + 2·27-s − 2·43-s − 2·47-s + 2·49-s + 4·63-s − 2·67-s − 4·69-s + 3·81-s − 2·83-s − 4·101-s + 2·103-s + 2·107-s − 2·121-s + 127-s − 4·129-s + 131-s + 137-s + 139-s − 4·141-s + 4·147-s + 149-s + 151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2560000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2560000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2560000\)    =    \(2^{12} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(0.637608\)
Root analytic conductor: \(0.893590\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2560000,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.800781532\)
\(L(\frac12)\) \(\approx\) \(2.800781532\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
7$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T^{2} ) \)
11$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_2^2$ \( 1 + T^{4} \)
17$C_2^2$ \( 1 + T^{4} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
23$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T^{2} ) \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_2$ \( ( 1 + T^{2} )^{2} \)
37$C_2^2$ \( 1 + T^{4} \)
41$C_2$ \( ( 1 + T^{2} )^{2} \)
43$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T^{2} ) \)
47$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T^{2} ) \)
53$C_2^2$ \( 1 + T^{4} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
61$C_2$ \( ( 1 + T^{2} )^{2} \)
67$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T^{2} ) \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_2^2$ \( 1 + T^{4} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T^{2} ) \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_2^2$ \( 1 + T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.702788932087076384253681683392, −9.336137767135761875116565430071, −8.768539091866812237486005072799, −8.424259432951252227075141732133, −8.290612172734234462516375814948, −8.081474969791895606429605224165, −7.49852891830371670949769420491, −7.42271215906803915216995867190, −6.59533025265282169763422979388, −6.35910984698418105891142023115, −5.55617438434589328247878086889, −5.22812367134743977701325713085, −4.50916375256853110461324208476, −4.48116622592691338547202548855, −3.84278008463460074942882744315, −3.27385646867688932235280580080, −2.89458068973806471730627222799, −2.24492217076563886293446112366, −1.64300569239688915817781434294, −1.59584208834128298357390072734, 1.59584208834128298357390072734, 1.64300569239688915817781434294, 2.24492217076563886293446112366, 2.89458068973806471730627222799, 3.27385646867688932235280580080, 3.84278008463460074942882744315, 4.48116622592691338547202548855, 4.50916375256853110461324208476, 5.22812367134743977701325713085, 5.55617438434589328247878086889, 6.35910984698418105891142023115, 6.59533025265282169763422979388, 7.42271215906803915216995867190, 7.49852891830371670949769420491, 8.081474969791895606429605224165, 8.290612172734234462516375814948, 8.424259432951252227075141732133, 8.768539091866812237486005072799, 9.336137767135761875116565430071, 9.702788932087076384253681683392

Graph of the $Z$-function along the critical line