L(s) = 1 | + 4·19-s + 4·41-s − 4·59-s − 81-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + ⋯ |
L(s) = 1 | + 4·19-s + 4·41-s − 4·59-s − 81-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2560000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2560000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.340204092\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.340204092\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.515687293314207306868340307613, −9.468427319567913503046470733907, −9.183138683078763071342271146553, −8.790894359296079559353858828535, −7.88094944477844520739144757182, −7.81564094393609941575406058867, −7.44055094425025743718440609229, −7.28964249665577355792829972999, −6.52495618244382662242515758302, −6.09694848561466230782235868140, −5.60393317637493827206774621348, −5.49332326171988530287327471354, −4.66999188098055674610608618402, −4.62688692176229748117190839873, −3.73177372241674350216858593412, −3.43861809253370320929516180893, −2.71884513263521141784660689479, −2.63670773378722526500976379897, −1.34023894076697230217001540114, −1.14368493445802448259459956203,
1.14368493445802448259459956203, 1.34023894076697230217001540114, 2.63670773378722526500976379897, 2.71884513263521141784660689479, 3.43861809253370320929516180893, 3.73177372241674350216858593412, 4.62688692176229748117190839873, 4.66999188098055674610608618402, 5.49332326171988530287327471354, 5.60393317637493827206774621348, 6.09694848561466230782235868140, 6.52495618244382662242515758302, 7.28964249665577355792829972999, 7.44055094425025743718440609229, 7.81564094393609941575406058867, 7.88094944477844520739144757182, 8.790894359296079559353858828535, 9.183138683078763071342271146553, 9.468427319567913503046470733907, 9.515687293314207306868340307613