Properties

Label 4-405e2-1.1-c1e2-0-12
Degree $4$
Conductor $164025$
Sign $1$
Analytic cond. $10.4583$
Root an. cond. $1.79831$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s + 2·5-s − 6·7-s − 4·8-s − 4·10-s − 8·11-s − 4·13-s + 12·14-s + 8·16-s − 2·17-s + 2·19-s + 4·20-s + 16·22-s + 3·25-s + 8·26-s − 12·28-s − 4·29-s − 6·31-s − 8·32-s + 4·34-s − 12·35-s − 2·37-s − 4·38-s − 8·40-s − 4·41-s − 10·43-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s + 0.894·5-s − 2.26·7-s − 1.41·8-s − 1.26·10-s − 2.41·11-s − 1.10·13-s + 3.20·14-s + 2·16-s − 0.485·17-s + 0.458·19-s + 0.894·20-s + 3.41·22-s + 3/5·25-s + 1.56·26-s − 2.26·28-s − 0.742·29-s − 1.07·31-s − 1.41·32-s + 0.685·34-s − 2.02·35-s − 0.328·37-s − 0.648·38-s − 1.26·40-s − 0.624·41-s − 1.52·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 164025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 164025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(164025\)    =    \(3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(10.4583\)
Root analytic conductor: \(1.79831\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 164025,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_1$ \( ( 1 - T )^{2} \)
good2$C_2^2$ \( 1 + p T + p T^{2} + p^{2} T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 + 6 T + 20 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + 8 T + 35 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 4 T + 18 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 2 T + 32 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 2 T + 27 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 4 T + 35 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
37$D_{4}$ \( 1 + 2 T + 72 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 4 T + 59 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 10 T + 84 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 14 T + 140 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 10 T + 128 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 20 T + 215 T^{2} + 20 p T^{3} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 122 T^{2} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 4 T + 143 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 2 T + 72 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 24 T + 290 T^{2} - 24 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 6 T + 148 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 151 T^{2} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 2 T + 120 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.53395455354729580116053469386, −10.47901817533946089705980451277, −9.891659987097994186587409226244, −9.722832552934395336803449497777, −9.222697266578735014282348495178, −9.160920829589346233820277538329, −8.113279120425039489990623479181, −8.103368373131588726861552509454, −7.31996317957000879743322008349, −6.77562535273111037724955155460, −6.50951253662799041173106328615, −5.84110997200682682606964101848, −5.30600954979009837211133848160, −5.05003835867806828695676183738, −3.61864026751503349114017566624, −2.99718508586738244117959337162, −2.75549156342552231674726398882, −1.94056688123354518976348832487, 0, 0, 1.94056688123354518976348832487, 2.75549156342552231674726398882, 2.99718508586738244117959337162, 3.61864026751503349114017566624, 5.05003835867806828695676183738, 5.30600954979009837211133848160, 5.84110997200682682606964101848, 6.50951253662799041173106328615, 6.77562535273111037724955155460, 7.31996317957000879743322008349, 8.103368373131588726861552509454, 8.113279120425039489990623479181, 9.160920829589346233820277538329, 9.222697266578735014282348495178, 9.722832552934395336803449497777, 9.891659987097994186587409226244, 10.47901817533946089705980451277, 10.53395455354729580116053469386

Graph of the $Z$-function along the critical line