Properties

Label 4-3e6-1.1-c6e2-0-1
Degree $4$
Conductor $729$
Sign $1$
Analytic cond. $38.5822$
Root an. cond. $2.49228$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 92·4-s + 598·7-s + 4.99e3·13-s + 4.36e3·16-s − 5.01e3·19-s − 2.63e4·25-s + 5.50e4·28-s + 1.06e4·31-s + 6.51e4·37-s − 1.41e5·43-s + 3.29e4·49-s + 4.59e5·52-s − 1.23e5·61-s + 2.50e4·64-s − 8.60e5·67-s + 5.03e5·73-s − 4.61e5·76-s + 1.32e6·79-s + 2.98e6·91-s + 4.41e5·97-s − 2.42e6·100-s − 1.18e6·103-s + 3.02e6·109-s + 2.61e6·112-s + 3.15e6·121-s + 9.80e5·124-s + 127-s + ⋯
L(s)  = 1  + 1.43·4-s + 1.74·7-s + 2.27·13-s + 1.06·16-s − 0.731·19-s − 1.68·25-s + 2.50·28-s + 0.357·31-s + 1.28·37-s − 1.77·43-s + 0.279·49-s + 3.26·52-s − 0.544·61-s + 0.0954·64-s − 2.86·67-s + 1.29·73-s − 1.05·76-s + 2.68·79-s + 3.95·91-s + 0.483·97-s − 2.42·100-s − 1.08·103-s + 2.33·109-s + 1.85·112-s + 1.78·121-s + 0.514·124-s − 1.27·133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+3)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $1$
Analytic conductor: \(38.5822\)
Root analytic conductor: \(2.49228\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 729,\ (\ :3, 3),\ 1)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(3.880602172\)
\(L(\frac12)\) \(\approx\) \(3.880602172\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
good2$C_2^2$ \( 1 - 23 p^{2} T^{2} + p^{12} T^{4} \)
5$C_2$ \( ( 1 - 14 p T + p^{6} T^{2} )( 1 + 14 p T + p^{6} T^{2} ) \)
7$C_2$ \( ( 1 - 299 T + p^{6} T^{2} )^{2} \)
11$C_2^2$ \( 1 - 3153746 T^{2} + p^{12} T^{4} \)
13$C_2$ \( ( 1 - 2495 T + p^{6} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 44770754 T^{2} + p^{12} T^{4} \)
19$C_2$ \( ( 1 + 2509 T + p^{6} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 170306 p^{2} T^{2} + p^{12} T^{4} \)
29$C_2^2$ \( 1 - 627387698 T^{2} + p^{12} T^{4} \)
31$C_2$ \( ( 1 - 5330 T + p^{6} T^{2} )^{2} \)
37$C_2$ \( ( 1 - 32591 T + p^{6} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 5125179746 T^{2} + p^{12} T^{4} \)
43$C_2$ \( ( 1 + 70630 T + p^{6} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 21542558402 T^{2} + p^{12} T^{4} \)
53$C_2^2$ \( 1 - 7869111122 T^{2} + p^{12} T^{4} \)
59$C_2^2$ \( 1 - 28021297682 T^{2} + p^{12} T^{4} \)
61$C_2$ \( ( 1 + 61801 T + p^{6} T^{2} )^{2} \)
67$C_2$ \( ( 1 + 430261 T + p^{6} T^{2} )^{2} \)
71$C_2^2$ \( 1 - 192841636898 T^{2} + p^{12} T^{4} \)
73$C_2$ \( ( 1 - 251615 T + p^{6} T^{2} )^{2} \)
79$C_2$ \( ( 1 - 660827 T + p^{6} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 17306550002 T^{2} + p^{12} T^{4} \)
89$C_2^2$ \( 1 - 920751210146 T^{2} + p^{12} T^{4} \)
97$C_2$ \( ( 1 - 220727 T + p^{6} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.32901971440025001174604379715, −15.67967349470792618529683367992, −15.05649146261494812633409485461, −14.83552838579428360049450296384, −13.60520871549574784535648973829, −13.57293222126820040829193728746, −12.29168464788704310873779048123, −11.62369540682971623391568410023, −11.05625979805148337460201676372, −11.01828444618274095997147346912, −9.990486139180967140208432314978, −8.733367916535631938827728697853, −8.111968754919570520732082179980, −7.60224623730087719735163842154, −6.36916925635655843099364052175, −6.00095655174430841648749994050, −4.68841056120705700074402565526, −3.53858300520273510886731839187, −2.03232292531174936133167360743, −1.37340758254179577886894900599, 1.37340758254179577886894900599, 2.03232292531174936133167360743, 3.53858300520273510886731839187, 4.68841056120705700074402565526, 6.00095655174430841648749994050, 6.36916925635655843099364052175, 7.60224623730087719735163842154, 8.111968754919570520732082179980, 8.733367916535631938827728697853, 9.990486139180967140208432314978, 11.01828444618274095997147346912, 11.05625979805148337460201676372, 11.62369540682971623391568410023, 12.29168464788704310873779048123, 13.57293222126820040829193728746, 13.60520871549574784535648973829, 14.83552838579428360049450296384, 15.05649146261494812633409485461, 15.67967349470792618529683367992, 16.32901971440025001174604379715

Graph of the $Z$-function along the critical line