L(s) = 1 | − 9·2-s + 35·4-s − 72·5-s − 8·7-s − 189·8-s + 648·10-s − 522·11-s − 704·13-s + 72·14-s + 1.65e3·16-s − 216·17-s − 2.84e3·19-s − 2.52e3·20-s + 4.69e3·22-s + 36·23-s + 1.46e3·25-s + 6.33e3·26-s − 280·28-s − 1.22e4·29-s − 1.06e3·31-s − 7.10e3·32-s + 1.94e3·34-s + 576·35-s + 9.00e3·37-s + 2.55e4·38-s + 1.36e4·40-s − 5.68e3·41-s + ⋯ |
L(s) = 1 | − 1.59·2-s + 1.09·4-s − 1.28·5-s − 0.0617·7-s − 1.04·8-s + 2.04·10-s − 1.30·11-s − 1.15·13-s + 0.0981·14-s + 1.62·16-s − 0.181·17-s − 1.80·19-s − 1.40·20-s + 2.06·22-s + 0.0141·23-s + 0.468·25-s + 1.83·26-s − 0.0674·28-s − 2.70·29-s − 0.198·31-s − 1.22·32-s + 0.288·34-s + 0.0794·35-s + 1.08·37-s + 2.87·38-s + 1.34·40-s − 0.528·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 3 | | \( 1 \) |
good | 2 | $D_{4}$ | \( 1 + 9 T + 23 p T^{2} + 9 p^{5} T^{3} + p^{10} T^{4} \) |
| 5 | $D_{4}$ | \( 1 + 72 T + 3721 T^{2} + 72 p^{5} T^{3} + p^{10} T^{4} \) |
| 7 | $D_{4}$ | \( 1 + 8 T + 21237 T^{2} + 8 p^{5} T^{3} + p^{10} T^{4} \) |
| 11 | $D_{4}$ | \( 1 + 522 T + 351055 T^{2} + 522 p^{5} T^{3} + p^{10} T^{4} \) |
| 13 | $D_{4}$ | \( 1 + 704 T + 668202 T^{2} + 704 p^{5} T^{3} + p^{10} T^{4} \) |
| 17 | $D_{4}$ | \( 1 + 216 T + 1771810 T^{2} + 216 p^{5} T^{3} + p^{10} T^{4} \) |
| 19 | $D_{4}$ | \( 1 + 2840 T + 6522450 T^{2} + 2840 p^{5} T^{3} + p^{10} T^{4} \) |
| 23 | $D_{4}$ | \( 1 - 36 T + 12811810 T^{2} - 36 p^{5} T^{3} + p^{10} T^{4} \) |
| 29 | $D_{4}$ | \( 1 + 12240 T + 77345110 T^{2} + 12240 p^{5} T^{3} + p^{10} T^{4} \) |
| 31 | $D_{4}$ | \( 1 + 1064 T + 47118813 T^{2} + 1064 p^{5} T^{3} + p^{10} T^{4} \) |
| 37 | $D_{4}$ | \( 1 - 9004 T + 114341118 T^{2} - 9004 p^{5} T^{3} + p^{10} T^{4} \) |
| 41 | $D_{4}$ | \( 1 + 5688 T + 76219870 T^{2} + 5688 p^{5} T^{3} + p^{10} T^{4} \) |
| 43 | $D_{4}$ | \( 1 - 784 T + 202511922 T^{2} - 784 p^{5} T^{3} + p^{10} T^{4} \) |
| 47 | $D_{4}$ | \( 1 + 1116 T + 71228386 T^{2} + 1116 p^{5} T^{3} + p^{10} T^{4} \) |
| 53 | $D_{4}$ | \( 1 + 4536 T + 660088897 T^{2} + 4536 p^{5} T^{3} + p^{10} T^{4} \) |
| 59 | $D_{4}$ | \( 1 - 67320 T + 2518887910 T^{2} - 67320 p^{5} T^{3} + p^{10} T^{4} \) |
| 61 | $D_{4}$ | \( 1 + 49904 T + 2108747994 T^{2} + 49904 p^{5} T^{3} + p^{10} T^{4} \) |
| 67 | $D_{4}$ | \( 1 + 42176 T + 2044405986 T^{2} + 42176 p^{5} T^{3} + p^{10} T^{4} \) |
| 71 | $D_{4}$ | \( 1 - 43848 T + 3234080590 T^{2} - 43848 p^{5} T^{3} + p^{10} T^{4} \) |
| 73 | $D_{4}$ | \( 1 - 47218 T + 4446546819 T^{2} - 47218 p^{5} T^{3} + p^{10} T^{4} \) |
| 79 | $D_{4}$ | \( 1 + 49616 T + 6766377054 T^{2} + 49616 p^{5} T^{3} + p^{10} T^{4} \) |
| 83 | $D_{4}$ | \( 1 - 102294 T + 8848061695 T^{2} - 102294 p^{5} T^{3} + p^{10} T^{4} \) |
| 89 | $D_{4}$ | \( 1 - 35856 T + 7481861710 T^{2} - 35856 p^{5} T^{3} + p^{10} T^{4} \) |
| 97 | $D_{4}$ | \( 1 - 169966 T + 17238594003 T^{2} - 169966 p^{5} T^{3} + p^{10} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.17999917887923500167258426393, −15.39502855705285227673997739201, −14.99061001729277955060696585310, −14.64578887722905512107798798470, −13.06551024353514213937485183024, −12.84621168482228348849453124300, −11.95841274257853507711149653012, −11.29025666334274852912324291275, −10.66063145895024305716026926176, −9.949094344895695870149689934015, −9.244445938157306661201982654219, −8.555372447077073065801821521005, −7.70720377342555246055284682169, −7.62727759266160681260233365664, −6.31770204894301836595249712062, −5.06501297354475561411474000335, −3.76248226708603125570294469909, −2.34138703985498291691630673227, 0, 0,
2.34138703985498291691630673227, 3.76248226708603125570294469909, 5.06501297354475561411474000335, 6.31770204894301836595249712062, 7.62727759266160681260233365664, 7.70720377342555246055284682169, 8.555372447077073065801821521005, 9.244445938157306661201982654219, 9.949094344895695870149689934015, 10.66063145895024305716026926176, 11.29025666334274852912324291275, 11.95841274257853507711149653012, 12.84621168482228348849453124300, 13.06551024353514213937485183024, 14.64578887722905512107798798470, 14.99061001729277955060696585310, 15.39502855705285227673997739201, 16.17999917887923500167258426393