Properties

Label 4-3e6-1.1-c5e2-0-0
Degree $4$
Conductor $729$
Sign $1$
Analytic cond. $18.7520$
Root an. cond. $2.08095$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10·4-s + 334·7-s − 470·13-s − 924·16-s + 2.72e3·19-s − 2.79e3·25-s − 3.34e3·28-s + 7.00e3·31-s + 2.62e4·37-s + 208·43-s + 5.00e4·49-s + 4.70e3·52-s − 1.47e4·61-s + 1.94e4·64-s + 7.77e4·67-s + 1.09e4·73-s − 2.72e4·76-s − 1.65e5·79-s − 1.56e5·91-s − 9.92e4·97-s + 2.79e4·100-s − 1.89e5·103-s + 2.49e5·109-s − 3.08e5·112-s + 2.61e5·121-s − 7.00e4·124-s + 127-s + ⋯
L(s)  = 1  − 0.312·4-s + 2.57·7-s − 0.771·13-s − 0.902·16-s + 1.72·19-s − 0.894·25-s − 0.805·28-s + 1.30·31-s + 3.14·37-s + 0.0171·43-s + 2.97·49-s + 0.241·52-s − 0.508·61-s + 0.594·64-s + 2.11·67-s + 0.240·73-s − 0.540·76-s − 2.98·79-s − 1.98·91-s − 1.07·97-s + 0.279·100-s − 1.76·103-s + 2.01·109-s − 2.32·112-s + 1.62·121-s − 0.408·124-s + 5.50e−6·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $1$
Analytic conductor: \(18.7520\)
Root analytic conductor: \(2.08095\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 729,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.266168484\)
\(L(\frac12)\) \(\approx\) \(2.266168484\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
good2$C_2^2$ \( 1 + 5 p T^{2} + p^{10} T^{4} \)
5$C_2^2$ \( 1 + 2794 T^{2} + p^{10} T^{4} \)
7$C_2$ \( ( 1 - 167 T + p^{5} T^{2} )^{2} \)
11$C_2^2$ \( 1 - 261962 T^{2} + p^{10} T^{4} \)
13$C_2$ \( ( 1 + 235 T + p^{5} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 2808610 T^{2} + p^{10} T^{4} \)
19$C_2$ \( ( 1 - 1361 T + p^{5} T^{2} )^{2} \)
23$C_2^2$ \( 1 + 7063150 T^{2} + p^{10} T^{4} \)
29$C_2^2$ \( 1 + 40801114 T^{2} + p^{10} T^{4} \)
31$C_2$ \( ( 1 - 3500 T + p^{5} T^{2} )^{2} \)
37$C_2$ \( ( 1 - 13115 T + p^{5} T^{2} )^{2} \)
41$C_2^2$ \( 1 + 143238802 T^{2} + p^{10} T^{4} \)
43$C_2$ \( ( 1 - 104 T + p^{5} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 37745758 T^{2} + p^{10} T^{4} \)
53$C_2^2$ \( 1 + 835271242 T^{2} + p^{10} T^{4} \)
59$C_2^2$ \( 1 + 484532374 T^{2} + p^{10} T^{4} \)
61$C_2$ \( ( 1 + 7393 T + p^{5} T^{2} )^{2} \)
67$C_2$ \( ( 1 - 38861 T + p^{5} T^{2} )^{2} \)
71$C_2^2$ \( 1 + 3602362318 T^{2} + p^{10} T^{4} \)
73$C_2$ \( ( 1 - 5465 T + p^{5} T^{2} )^{2} \)
79$C_2$ \( ( 1 + 82903 T + p^{5} T^{2} )^{2} \)
83$C_2^2$ \( 1 + 7701562630 T^{2} + p^{10} T^{4} \)
89$C_2^2$ \( 1 + 3109663474 T^{2} + p^{10} T^{4} \)
97$C_2$ \( ( 1 + 49603 T + p^{5} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.74430650279624425242780533139, −15.91368349828083401634052292965, −15.26032236392759854032447998901, −14.66070449210053976603178890432, −14.10703954616850405370163294143, −13.80117634488285171658816933005, −12.89415706528061783232935454164, −11.84419069072754654686991812163, −11.45355905347144470119494466548, −11.16137035077212669991273612776, −9.935885119629252332146229310373, −9.409305872844414406617692134725, −8.274946502929589927372230651342, −7.930641282386248022984232602830, −7.19328512718085639591101551867, −5.74527203674604307646717345609, −4.83916291033150074860993440614, −4.38282761481621820085750084826, −2.44692543196522632817817329616, −1.15606561193358013393957316331, 1.15606561193358013393957316331, 2.44692543196522632817817329616, 4.38282761481621820085750084826, 4.83916291033150074860993440614, 5.74527203674604307646717345609, 7.19328512718085639591101551867, 7.930641282386248022984232602830, 8.274946502929589927372230651342, 9.409305872844414406617692134725, 9.935885119629252332146229310373, 11.16137035077212669991273612776, 11.45355905347144470119494466548, 11.84419069072754654686991812163, 12.89415706528061783232935454164, 13.80117634488285171658816933005, 14.10703954616850405370163294143, 14.66070449210053976603178890432, 15.26032236392759854032447998901, 15.91368349828083401634052292965, 16.74430650279624425242780533139

Graph of the $Z$-function along the critical line