Properties

Label 4-39e4-1.1-c3e2-0-6
Degree $4$
Conductor $2313441$
Sign $1$
Analytic cond. $8053.60$
Root an. cond. $9.47322$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 11·4-s − 3·5-s + 9·7-s − 15·8-s − 3·10-s + 80·11-s + 9·14-s + 61·16-s − 19·17-s + 84·19-s + 33·20-s + 80·22-s − 196·23-s − 239·25-s − 99·28-s + 44·29-s + 86·31-s + 89·32-s − 19·34-s − 27·35-s − 209·37-s + 84·38-s + 45·40-s − 230·41-s + 287·43-s − 880·44-s + ⋯
L(s)  = 1  + 0.353·2-s − 1.37·4-s − 0.268·5-s + 0.485·7-s − 0.662·8-s − 0.0948·10-s + 2.19·11-s + 0.171·14-s + 0.953·16-s − 0.271·17-s + 1.01·19-s + 0.368·20-s + 0.775·22-s − 1.77·23-s − 1.91·25-s − 0.668·28-s + 0.281·29-s + 0.498·31-s + 0.491·32-s − 0.0958·34-s − 0.130·35-s − 0.928·37-s + 0.358·38-s + 0.177·40-s − 0.876·41-s + 1.01·43-s − 3.01·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2313441 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2313441 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2313441\)    =    \(3^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(8053.60\)
Root analytic conductor: \(9.47322\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 2313441,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
13 \( 1 \)
good2$D_{4}$ \( 1 - T + 3 p^{2} T^{2} - p^{3} T^{3} + p^{6} T^{4} \)
5$D_{4}$ \( 1 + 3 T + 248 T^{2} + 3 p^{3} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 - 9 T + 192 T^{2} - 9 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 - 80 T + 3650 T^{2} - 80 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 19 T + 8688 T^{2} + 19 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 84 T + 11130 T^{2} - 84 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 196 T + 33326 T^{2} + 196 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 - 44 T + 10094 T^{2} - 44 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 86 T + 56518 T^{2} - 86 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 209 T + 112120 T^{2} + 209 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 230 T + 149010 T^{2} + 230 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 - 287 T + 92698 T^{2} - 287 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 435 T + 192728 T^{2} - 435 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 118 T + 297410 T^{2} - 118 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 368 T + 379266 T^{2} + 368 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 1058 T + 580378 T^{2} + 1058 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 68 T + 373930 T^{2} + 68 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 131 T + 493328 T^{2} + 131 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 456 T + 542718 T^{2} + 456 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 1008 T + 1233294 T^{2} + 1008 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 1958 T + 1961238 T^{2} - 1958 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 720 T + 899726 T^{2} + 720 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 928 T + 943870 T^{2} - 928 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.010070294823792919159932014861, −8.598454228163027180398436626523, −8.078916271464225045122566790217, −7.78841939270955392669352595838, −7.44753963865920421021343975895, −6.80309779537962226015820848109, −6.30344870591967083347920950880, −6.06558753781027741166273109450, −5.49901558430668191371463091425, −5.17491368247831587147308559098, −4.47698345894573715125797139923, −4.23475697782100907485617697517, −3.81433886243805089861277327875, −3.72241947582491897860110102451, −2.91147160643551037658633816821, −2.13980044257665512243259396753, −1.36796763921283132514883258952, −1.23026557381232837221757028052, 0, 0, 1.23026557381232837221757028052, 1.36796763921283132514883258952, 2.13980044257665512243259396753, 2.91147160643551037658633816821, 3.72241947582491897860110102451, 3.81433886243805089861277327875, 4.23475697782100907485617697517, 4.47698345894573715125797139923, 5.17491368247831587147308559098, 5.49901558430668191371463091425, 6.06558753781027741166273109450, 6.30344870591967083347920950880, 6.80309779537962226015820848109, 7.44753963865920421021343975895, 7.78841939270955392669352595838, 8.078916271464225045122566790217, 8.598454228163027180398436626523, 9.010070294823792919159932014861

Graph of the $Z$-function along the critical line