Properties

Label 4-39e2-1.1-c7e2-0-0
Degree $4$
Conductor $1521$
Sign $1$
Analytic cond. $148.425$
Root an. cond. $3.49041$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 54·3-s − 92·4-s − 132·5-s − 432·6-s − 1.11e3·7-s + 960·8-s + 2.18e3·9-s + 1.05e3·10-s − 292·11-s − 4.96e3·12-s − 4.39e3·13-s + 8.92e3·14-s − 7.12e3·15-s − 1.52e3·16-s − 1.60e4·17-s − 1.74e4·18-s − 3.48e4·19-s + 1.21e4·20-s − 6.02e4·21-s + 2.33e3·22-s − 8.42e4·23-s + 5.18e4·24-s − 1.43e5·25-s + 3.51e4·26-s + 7.87e4·27-s + 1.02e5·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s − 0.718·4-s − 0.472·5-s − 0.816·6-s − 1.22·7-s + 0.662·8-s + 9-s + 0.333·10-s − 0.0661·11-s − 0.829·12-s − 0.554·13-s + 0.869·14-s − 0.545·15-s − 0.0927·16-s − 0.790·17-s − 0.707·18-s − 1.16·19-s + 0.339·20-s − 1.42·21-s + 0.0467·22-s − 1.44·23-s + 0.765·24-s − 1.83·25-s + 0.392·26-s + 0.769·27-s + 0.883·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1521\)    =    \(3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(148.425\)
Root analytic conductor: \(3.49041\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 1521,\ (\ :7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 - p^{3} T )^{2} \)
13$C_1$ \( ( 1 + p^{3} T )^{2} \)
good2$D_{4}$ \( 1 + p^{3} T + 39 p^{2} T^{2} + p^{10} T^{3} + p^{14} T^{4} \)
5$D_{4}$ \( 1 + 132 T + 32098 p T^{2} + 132 p^{7} T^{3} + p^{14} T^{4} \)
7$D_{4}$ \( 1 + 1116 T + 1885950 T^{2} + 1116 p^{7} T^{3} + p^{14} T^{4} \)
11$D_{4}$ \( 1 + 292 T + 21352058 T^{2} + 292 p^{7} T^{3} + p^{14} T^{4} \)
17$D_{4}$ \( 1 + 16004 T + 878784534 T^{2} + 16004 p^{7} T^{3} + p^{14} T^{4} \)
19$D_{4}$ \( 1 + 34836 T + 1346863878 T^{2} + 34836 p^{7} T^{3} + p^{14} T^{4} \)
23$D_{4}$ \( 1 + 84296 T + 8574812894 T^{2} + 84296 p^{7} T^{3} + p^{14} T^{4} \)
29$D_{4}$ \( 1 + 107132 T + 37369002158 T^{2} + 107132 p^{7} T^{3} + p^{14} T^{4} \)
31$D_{4}$ \( 1 - 9820 T + 43124615086 T^{2} - 9820 p^{7} T^{3} + p^{14} T^{4} \)
37$D_{4}$ \( 1 + 460 p T + 189465655630 T^{2} + 460 p^{8} T^{3} + p^{14} T^{4} \)
41$D_{4}$ \( 1 - 542092 T + 453145566978 T^{2} - 542092 p^{7} T^{3} + p^{14} T^{4} \)
43$D_{4}$ \( 1 + 260512 T + 377685292150 T^{2} + 260512 p^{7} T^{3} + p^{14} T^{4} \)
47$D_{4}$ \( 1 - 1167660 T + 1224388612226 T^{2} - 1167660 p^{7} T^{3} + p^{14} T^{4} \)
53$D_{4}$ \( 1 + 22804 T + 1553121851678 T^{2} + 22804 p^{7} T^{3} + p^{14} T^{4} \)
59$D_{4}$ \( 1 + 314036 T + 4761555211146 T^{2} + 314036 p^{7} T^{3} + p^{14} T^{4} \)
61$D_{4}$ \( 1 + 1240028 T + 4329297452974 T^{2} + 1240028 p^{7} T^{3} + p^{14} T^{4} \)
67$D_{4}$ \( 1 + 3256228 T + 6362255889958 T^{2} + 3256228 p^{7} T^{3} + p^{14} T^{4} \)
71$D_{4}$ \( 1 + 227516 T + 15764213918882 T^{2} + 227516 p^{7} T^{3} + p^{14} T^{4} \)
73$D_{4}$ \( 1 - 1100484 T + 10351835092902 T^{2} - 1100484 p^{7} T^{3} + p^{14} T^{4} \)
79$D_{4}$ \( 1 + 12543984 T + 75790244740446 T^{2} + 12543984 p^{7} T^{3} + p^{14} T^{4} \)
83$D_{4}$ \( 1 + 2193436 T + 4256986584378 T^{2} + 2193436 p^{7} T^{3} + p^{14} T^{4} \)
89$D_{4}$ \( 1 + 4415748 T + 90735340507778 T^{2} + 4415748 p^{7} T^{3} + p^{14} T^{4} \)
97$D_{4}$ \( 1 - 4898660 T + 138376132041526 T^{2} - 4898660 p^{7} T^{3} + p^{14} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.26254596963338886416323141224, −13.89795006482067572175820233651, −13.15543750888371225807347555030, −12.90370054479873281157439398271, −12.13141029273471357403286147929, −11.33207939649125316537896870150, −10.17653568650191007475771220109, −9.999053115370831751637924733489, −9.102712980234007257354708779260, −9.027305990368907120996406950441, −8.017128817958878473642165766235, −7.69054280569805910226920872323, −6.68073841478749291157185565571, −5.84524442341005354145296584522, −4.21410467262449570713187413231, −4.09106944472516766957069114027, −2.84471088229949727828117657614, −1.90228932747277198791997108504, 0, 0, 1.90228932747277198791997108504, 2.84471088229949727828117657614, 4.09106944472516766957069114027, 4.21410467262449570713187413231, 5.84524442341005354145296584522, 6.68073841478749291157185565571, 7.69054280569805910226920872323, 8.017128817958878473642165766235, 9.027305990368907120996406950441, 9.102712980234007257354708779260, 9.999053115370831751637924733489, 10.17653568650191007475771220109, 11.33207939649125316537896870150, 12.13141029273471357403286147929, 12.90370054479873281157439398271, 13.15543750888371225807347555030, 13.89795006482067572175820233651, 14.26254596963338886416323141224

Graph of the $Z$-function along the critical line