Properties

Label 4-39e2-1.1-c3e2-0-1
Degree $4$
Conductor $1521$
Sign $1$
Analytic cond. $5.29494$
Root an. cond. $1.51692$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 8·4-s + 18·7-s + 90·11-s − 24·12-s − 65·13-s + 117·17-s − 42·19-s + 54·21-s − 18·23-s + 223·25-s − 27·27-s − 144·28-s + 99·29-s + 270·33-s + 195·37-s − 195·39-s − 63·41-s + 82·43-s − 720·44-s − 127·49-s + 351·51-s + 520·52-s − 522·53-s − 126·57-s − 1.36e3·59-s + 719·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s + 0.971·7-s + 2.46·11-s − 0.577·12-s − 1.38·13-s + 1.66·17-s − 0.507·19-s + 0.561·21-s − 0.163·23-s + 1.78·25-s − 0.192·27-s − 0.971·28-s + 0.633·29-s + 1.42·33-s + 0.866·37-s − 0.800·39-s − 0.239·41-s + 0.290·43-s − 2.46·44-s − 0.370·49-s + 0.963·51-s + 1.38·52-s − 1.35·53-s − 0.292·57-s − 3.01·59-s + 1.50·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1521\)    =    \(3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(5.29494\)
Root analytic conductor: \(1.51692\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1521,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.708736275\)
\(L(\frac12)\) \(\approx\) \(1.708736275\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 - p T + p^{2} T^{2} \)
13$C_2$ \( 1 + 5 p T + p^{3} T^{2} \)
good2$C_2^2$ \( 1 + p^{3} T^{2} + p^{6} T^{4} \)
5$C_2^2$ \( 1 - 223 T^{2} + p^{6} T^{4} \)
7$C_2^2$ \( 1 - 18 T + 451 T^{2} - 18 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 - 90 T + 4031 T^{2} - 90 p^{3} T^{3} + p^{6} T^{4} \)
17$C_2^2$ \( 1 - 117 T + 8776 T^{2} - 117 p^{3} T^{3} + p^{6} T^{4} \)
19$C_2^2$ \( 1 + 42 T + 7447 T^{2} + 42 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2^2$ \( 1 + 18 T - 11843 T^{2} + 18 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2^2$ \( 1 - 99 T - 14588 T^{2} - 99 p^{3} T^{3} + p^{6} T^{4} \)
31$C_2^2$ \( 1 - 21950 T^{2} + p^{6} T^{4} \)
37$C_2^2$ \( 1 - 195 T + 63328 T^{2} - 195 p^{3} T^{3} + p^{6} T^{4} \)
41$C_2^2$ \( 1 + 63 T + 70244 T^{2} + 63 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2^2$ \( 1 - 82 T - 72783 T^{2} - 82 p^{3} T^{3} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 202354 T^{2} + p^{6} T^{4} \)
53$C_2$ \( ( 1 + 261 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 + 1368 T + 829187 T^{2} + 1368 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2$ \( ( 1 - 901 T + p^{3} T^{2} )( 1 + 182 T + p^{3} T^{2} ) \)
67$C_2^2$ \( 1 + 1218 T + 795271 T^{2} + 1218 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2^2$ \( 1 + 810 T + 576611 T^{2} + 810 p^{3} T^{3} + p^{6} T^{4} \)
73$C_2^2$ \( 1 - 309959 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 + 440 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 + 284726 T^{2} + p^{6} T^{4} \)
89$C_2^2$ \( 1 - 2628 T + 3007097 T^{2} - 2628 p^{3} T^{3} + p^{6} T^{4} \)
97$C_2^2$ \( 1 + 2004 T + 2251345 T^{2} + 2004 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.19070696740159999958382328021, −14.95312518381551538990764003931, −14.54893601012994124085389315948, −14.46042472992647119789468202108, −14.04472311041188170855034220425, −13.17085211965414627495141601243, −12.25832657975772405799141516690, −12.09929814719852620392873192070, −11.30467924244811007145418504708, −10.40673653615288329941184404978, −9.525540148482312574959661327584, −9.225365385306053188226397977005, −8.574378121638728846891101503349, −7.86280362991122280341051141812, −7.04493677831332736931288409360, −6.09233237928203958508283199163, −4.77684931404360050921121243664, −4.42164068468694508024683721833, −3.17206571869895288643449316524, −1.36087313542375749807834651046, 1.36087313542375749807834651046, 3.17206571869895288643449316524, 4.42164068468694508024683721833, 4.77684931404360050921121243664, 6.09233237928203958508283199163, 7.04493677831332736931288409360, 7.86280362991122280341051141812, 8.574378121638728846891101503349, 9.225365385306053188226397977005, 9.525540148482312574959661327584, 10.40673653615288329941184404978, 11.30467924244811007145418504708, 12.09929814719852620392873192070, 12.25832657975772405799141516690, 13.17085211965414627495141601243, 14.04472311041188170855034220425, 14.46042472992647119789468202108, 14.54893601012994124085389315948, 14.95312518381551538990764003931, 16.19070696740159999958382328021

Graph of the $Z$-function along the critical line