L(s) = 1 | + 2·5-s + 3·7-s − 2·11-s + 2·13-s − 7·17-s + 9·19-s − 6·23-s + 3·25-s + 5·29-s + 5·31-s + 6·35-s − 37-s + 20·41-s + 2·43-s + 6·47-s − 3·49-s + 13·53-s − 4·55-s + 2·59-s − 3·61-s + 4·65-s + 9·71-s + 18·73-s − 6·77-s + 10·79-s − 20·83-s − 14·85-s + ⋯ |
L(s) = 1 | + 0.894·5-s + 1.13·7-s − 0.603·11-s + 0.554·13-s − 1.69·17-s + 2.06·19-s − 1.25·23-s + 3/5·25-s + 0.928·29-s + 0.898·31-s + 1.01·35-s − 0.164·37-s + 3.12·41-s + 0.304·43-s + 0.875·47-s − 3/7·49-s + 1.78·53-s − 0.539·55-s + 0.260·59-s − 0.384·61-s + 0.496·65-s + 1.06·71-s + 2.10·73-s − 0.683·77-s + 1.12·79-s − 2.19·83-s − 1.51·85-s + ⋯ |
Λ(s)=(=(15681600s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(15681600s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
15681600
= 26⋅34⋅52⋅112
|
Sign: |
1
|
Analytic conductor: |
999.872 |
Root analytic conductor: |
5.62323 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 15681600, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
5.074674934 |
L(21) |
≈ |
5.074674934 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1 | (1−T)2 |
| 11 | C1 | (1+T)2 |
good | 7 | D4 | 1−3T+12T2−3pT3+p2T4 |
| 13 | C4 | 1−2T+10T2−2pT3+p2T4 |
| 17 | D4 | 1+7T+42T2+7pT3+p2T4 |
| 19 | D4 | 1−9T+54T2−9pT3+p2T4 |
| 23 | D4 | 1+6T+38T2+6pT3+p2T4 |
| 29 | D4 | 1−5T+60T2−5pT3+p2T4 |
| 31 | D4 | 1−5T+30T2−5pT3+p2T4 |
| 37 | D4 | 1+T−32T2+pT3+p2T4 |
| 41 | C2 | (1−10T+pT2)2 |
| 43 | D4 | 1−2T+70T2−2pT3+p2T4 |
| 47 | D4 | 1−6T+86T2−6pT3+p2T4 |
| 53 | D4 | 1−13T+144T2−13pT3+p2T4 |
| 59 | D4 | 1−2T−34T2−2pT3+p2T4 |
| 61 | D4 | 1+3T+120T2+3pT3+p2T4 |
| 67 | C2 | (1+pT2)2 |
| 71 | D4 | 1−9T+158T2−9pT3+p2T4 |
| 73 | D4 | 1−18T+210T2−18pT3+p2T4 |
| 79 | D4 | 1−10T+166T2−10pT3+p2T4 |
| 83 | C2 | (1+10T+pT2)2 |
| 89 | D4 | 1−T+72T2−pT3+p2T4 |
| 97 | D4 | 1−26T+346T2−26pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.538635385706729659685077755658, −8.320278943682862826452854972727, −7.82429152551889613050976037380, −7.74282792418133725170019263166, −7.10616330976738281304077416408, −6.92801450965601876153003652734, −6.23338359420560625302644137487, −6.13569029005216695240034415597, −5.51667357525040713261715151201, −5.48716972949232146085652147968, −4.81601499484471995067949897508, −4.56197546287805922151796010638, −4.21112239957441019596349478859, −3.67880596935055625036903281520, −3.07887933862199104193716312538, −2.56445394667358042603938767457, −2.18178746378526174617723301059, −1.91391709410738428672465169812, −0.889077701804226795350455029179, −0.881744750176254648638780428010,
0.881744750176254648638780428010, 0.889077701804226795350455029179, 1.91391709410738428672465169812, 2.18178746378526174617723301059, 2.56445394667358042603938767457, 3.07887933862199104193716312538, 3.67880596935055625036903281520, 4.21112239957441019596349478859, 4.56197546287805922151796010638, 4.81601499484471995067949897508, 5.48716972949232146085652147968, 5.51667357525040713261715151201, 6.13569029005216695240034415597, 6.23338359420560625302644137487, 6.92801450965601876153003652734, 7.10616330976738281304077416408, 7.74282792418133725170019263166, 7.82429152551889613050976037380, 8.320278943682862826452854972727, 8.538635385706729659685077755658