Properties

Label 4-3960e2-1.1-c1e2-0-8
Degree $4$
Conductor $15681600$
Sign $1$
Analytic cond. $999.872$
Root an. cond. $5.62323$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 3·7-s − 2·11-s + 2·13-s − 7·17-s + 9·19-s − 6·23-s + 3·25-s + 5·29-s + 5·31-s + 6·35-s − 37-s + 20·41-s + 2·43-s + 6·47-s − 3·49-s + 13·53-s − 4·55-s + 2·59-s − 3·61-s + 4·65-s + 9·71-s + 18·73-s − 6·77-s + 10·79-s − 20·83-s − 14·85-s + ⋯
L(s)  = 1  + 0.894·5-s + 1.13·7-s − 0.603·11-s + 0.554·13-s − 1.69·17-s + 2.06·19-s − 1.25·23-s + 3/5·25-s + 0.928·29-s + 0.898·31-s + 1.01·35-s − 0.164·37-s + 3.12·41-s + 0.304·43-s + 0.875·47-s − 3/7·49-s + 1.78·53-s − 0.539·55-s + 0.260·59-s − 0.384·61-s + 0.496·65-s + 1.06·71-s + 2.10·73-s − 0.683·77-s + 1.12·79-s − 2.19·83-s − 1.51·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15681600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15681600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(15681600\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(999.872\)
Root analytic conductor: \(5.62323\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 15681600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.074674934\)
\(L(\frac12)\) \(\approx\) \(5.074674934\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_1$ \( ( 1 - T )^{2} \)
11$C_1$ \( ( 1 + T )^{2} \)
good7$D_{4}$ \( 1 - 3 T + 12 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
13$C_4$ \( 1 - 2 T + 10 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 7 T + 42 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 9 T + 54 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 6 T + 38 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - 5 T + 60 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 5 T + 30 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + T - 32 T^{2} + p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
43$D_{4}$ \( 1 - 2 T + 70 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 6 T + 86 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 13 T + 144 T^{2} - 13 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 2 T - 34 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 3 T + 120 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + p T^{2} )^{2} \)
71$D_{4}$ \( 1 - 9 T + 158 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 18 T + 210 T^{2} - 18 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 10 T + 166 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
89$D_{4}$ \( 1 - T + 72 T^{2} - p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 26 T + 346 T^{2} - 26 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.538635385706729659685077755658, −8.320278943682862826452854972727, −7.82429152551889613050976037380, −7.74282792418133725170019263166, −7.10616330976738281304077416408, −6.92801450965601876153003652734, −6.23338359420560625302644137487, −6.13569029005216695240034415597, −5.51667357525040713261715151201, −5.48716972949232146085652147968, −4.81601499484471995067949897508, −4.56197546287805922151796010638, −4.21112239957441019596349478859, −3.67880596935055625036903281520, −3.07887933862199104193716312538, −2.56445394667358042603938767457, −2.18178746378526174617723301059, −1.91391709410738428672465169812, −0.889077701804226795350455029179, −0.881744750176254648638780428010, 0.881744750176254648638780428010, 0.889077701804226795350455029179, 1.91391709410738428672465169812, 2.18178746378526174617723301059, 2.56445394667358042603938767457, 3.07887933862199104193716312538, 3.67880596935055625036903281520, 4.21112239957441019596349478859, 4.56197546287805922151796010638, 4.81601499484471995067949897508, 5.48716972949232146085652147968, 5.51667357525040713261715151201, 6.13569029005216695240034415597, 6.23338359420560625302644137487, 6.92801450965601876153003652734, 7.10616330976738281304077416408, 7.74282792418133725170019263166, 7.82429152551889613050976037380, 8.320278943682862826452854972727, 8.538635385706729659685077755658

Graph of the $Z$-function along the critical line